Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Рассмотрим теперь приложения общей теории и начнем с задачи о дифракции плоской ударной волны, распространяющейся вдоль закругленной стенки. Геометрия для выпуклой стенки представлена на рис. 8.2. Стенка является лучом, и ее форма задает граничное значение Заметим, что Граница сначала представляет собой прямую с Распространение волн вдоль ударной волны аналогично одномерным волнам в газовой динамике. Отклонение стенки соответствует движению поршня, и можно представить себе, что это отклонение тянет или толкает основание ударной волны и посылает волны вдоль нее. Выпуклая гранида соответствует вытягиваемому поршню, посылающему волны разрежения, тогда как вогнутая — поршню, генерирующему волны сжатия. В силу точно таких же рассуждений, как и в § 6.8 , решение в каждом случае является простой волной до тех пор, пока в результате опрокидывания не образуются вторичные ударные волны. Определяемый формулой (8.69) всюду, причем Значение Соответствующие соотношения в Разрежение около угла Рис. 8.8. Теоретическая форма ударной волны для дифракции на угле в Возмущение является центрированной простой волной (см. рис. 8.8), и решение для числа Маха Соответствующее значение следовательно, в момент времени Поскольку Первое возмущение распространяется по характеристике где Эту величину следует сравнить с где для сильных ударных волн при Таким образом, зависимость от Мы увидим ниже, что полная амплитуда возмущения предсказывается, как свидетельствуют значения Несмотря на то что точная формулировка для дифракции около угла приводит к автомодельному решению, зависящему от Сравним это выражение с результатами Лайтхилла в двух предельных случаях тогда как у Лайтхилла это значение умножается на а значение Јайтхилла приходится определять по графику, но численный множитель, цо-видимому, близок к 0,5 . Теория Јайтхилла показывает, что для слабых ударных волн возмущение распространяется по всему звуковому кругу, но для более сильных ударных волн оно более сконцентрировано, и действительно, при Учитывая сравнительную простоту этой приближенной теории, результаты можно считать удивительно хорошими. Анализ Лайтхилла, ограниченный случаем угла и малых Решение для произвольного исходного числа Маха и любой величины угла дается формулами (8.87) и (8.88). В пределе сильных ударных волн, когда Рис. 8.9. Дифракция ударной волны: сравнение экспериментальных (сплошные кривые) и теоретических (штриховые кривые) результатов (по Скьюзу). и форма решения становится яснее. Для сильных ударных волн соответствующее выражение для и в веере Уравнение для ударной волны в момент времени где Решение для различных значений Для сильных ударных волн не существует ограничений на величины то решения не существует. Предположительно это соответствует сильному разделению или другим эффектам около угла, но в настоящий момент интерпретация неясна. из равенств Угол рис. 8.10, определяется, согласно (8.82), из равенства Для сильных ударных волн и В действительности истинная конфигурация представляет собой отражение Маха с третьей отраженной волной и вихревым следом, как показано на рис. 8.10. Кроме того, «стебель Маха»часть ударной волны около стенки — слегка искривлен. Газодинамические условия на разрыве для трех ударных волн дают соотношения между углами течения и ударными волнами в тройной точке. Если считать, что стебель Маха прямой, то эти соотношения позволяют иным способом определить Различие для малых значений соотношения для вторичных ударных волн продолжают предсказывать очень маленький стебель Маха. Однако для углов Рис. 8.11. Зависимость угла пих примерно Однако оставалась еще трудность, связанная с началом вычислений у передней точки, поскольку в этой точке имеется особенность. Брисон и Гросс воспользовались следующей процедурой. На ранних стадиях предполагается, что маленький стебель Маха прямолинеен и направлен по радиусу, как на рис. 8.12. Если длина этого стебля составляет от передней точки, а радиус цилиндра нормирован на единицу, то невозмущенные лучи, лежащие в трубке с? площадью Поскольку для данного радиуса Уравнения (8.98) и (8.99) дают дифференциальное уравнение для Для малых Рис. 8.13. Длина стебля Маха для вторичной ударной волны. Рис. 8.14. Дифракция на цилиндре при Решение уравнения (8.100) изображено на рис. 8.13. Брисон и Гросс используют это решение вплоть до где и работать с системой На границе имеем Рис. 8.15a. Теневая фотография дифракции ударной волны на цилиндре диаметром 0,5 дюйма ( Maxa; R.S. — отраженная ударная волна; С. волна; M.S.— ударная волна тройная точка; V. — вихрь. контактный разрыв; T.P.- 8.15b. Теневая фотография дифракции ударной волны на цилиндре диаметром 0,5 дюйма при Рис. 8.15c. Теневая фотография дифракции ударной волны на цилиндре диаметром 0,5 дюйма при Рис. 8.16. Сравнение теоретических (сплошная кривая) и экспериментальвых (кружки) результатов для угла вторичной ударной волвы при дифракции на конусе (по Брисону и Гроссу [1]). Рис. 8.17. Дифракция на сфере. Кружки соответствуют случаю с экспериментальными данными. На рис. 8.16 проведено сравнение для зависимости угла вторичной ударной волны В случае сферы Брисон и Гросс проделали вычисления для системы (8.101) методом характеристик. Вычисления в окрестности передней критической точки проводились приближенным методом, аналогичным методу, использованному ими для цилиндра. Полученные результаты не так полны, как для цилиндра, но согласование между теорией и эксперпментом, показанное на рис. 8.17, столь же хорошо.
|
1 |
Оглавление
|