Главная > Линейные и нелинейные волны (Дж. Уизем)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Паводковые волны
Этот пример был подробно изучен в гл. 3. Отметим, что в принятых здесь обозначениях
c1=v+gh,c2=vgh,a=3v/2.

Согласно условиям (10.42), однородное течение h=h0,v=v0 устойчиво (как отмечено в § 3.2) при условии, что
v0gh0<3v02<v0+gh0,

где нижний предел фактически не является ограничением. Согласно критерию (10.48), ударная волна SII  обладает непрерывной структурой при условии, что
v(2)gh(2)<U<v(1)+gh(1).

Эти условия на разрыве для SII  показывают, что U>v22, так что ограничение снизу всегда выполняется. Поэтому критерий возникновения разрывов в SII-структуре имеет вид 
U>v(1)+gh(1).

Это в точности совпадает с результатом (3.52), полученным при помощи подробного анализа.
Магнитная газовая динамика
Уравнения волн в магнитной газовой динамике приведены в примерах 10 и 10§5.2. Первая система — это система I, и мы имеем
c1=(ε0μ)1/2,c2=u+a,c3=u,c4=ua,c5=(ε0μ)1/2.

Вторая система — это система II, и
a1=u+(a2+B2μρ)1/2,a2=a3=u,a4=u(a2+B2μρ)1/2.

Реальные волны, распространяющиеся относительно жидкости, имеют чередующиеся скорости, как и требуется условиями (10.42), и устойчивы. Слияние скоростей a2,a3 с c3 на траектории частицы, как легко проверяется, соответствует устойчивой ситуации.

Ударная волна SII  из a1-семейства, распространяющаяся со скоростью U, имеет непрерывную структуру при условии, что
u(2)+a(2)<U<(ε0μ)1/2.

Скорость света практически бесконечна, так что разрыв появляется на задней части профиля, когда
U<u(2)+a(2).

Это простой вывод результата, полученного Маршаллом [1] с помощью подробного анализа структуры ударной волны. Дальнейшее обсуждение этого случая можно найти в статье автора (Уизем [8] ).

Эффекты релаксации в газах
Уравнения невязкой газовой динамики (гл. 6) можно записать в виде
ρt+uρx+ρux=0,ut+uux+1ρpx=0,et+uex+pρux=0.

ГГри быстрых изменениях параметров течения внутренняя энергия e может отставать от равновесного значения, соответствующего окружающему давлению и плотности. Поступательное движение молекул устанавливается быстро, но запаздывание вращательного и колебательного движений может быть на порядок больше. Если предположить, что α степеней свободы устанавливаются мгновенно, а остальные αr стешеней свободы требуют большего времени релаксации, то можно положить
e=α2pρ+E,

где E — энергия отстающих степеней свободы. B равновесном состоянии (см. (6.42)) E принимает значение
Eравнов =αr2pρ.

Простое общее уравнение, описывающее релаксацию, имеет вид
Et+uEx=τ(Eαr2pρ),

где τ-время релаксации. После несложных преобразований систему уравнений можно записать в виде
ρt+uρx+ρux=0,ut+uux+1ρpx=0,α2(pt+upx)(1+α2)pρ(ρt+uρx)+ρ(Et+uEx)=0,Et+uEx+τ(Eαr2pρ)=0.

Характеристическими скоростями являотся
c1=u+af,c2=c3=u,c4=uaf,

где af — «замороженная» скорость звука, определяемая равенством
af2=(1+2α)pρ=γfpρ.

Это система I для данного случая. Однако, если время релаксации шим приближением в последнем уравнении системы, то имеем равновесную тео рию
ρt+uρx+ρux=0,ut+uux+1ρpx=0,α+αr2(pt+upx)(1+α+αr2)pρ(ρt+uρx)=0.

Это упрощенная система II для нашей задачи. Характеристические скорости выражаются формулами
a1=u+ae,a2=u,a3=uae,

тде ae — равювесная скорость звука, определяемая равенством
ae2=(1+2α+αr)pρ=γepρ.

Поскольку γe<γf, различше скорости чередуются и имеет место устойчивость; слияние скоростей со скоростью частицы снова соответствует устойчивости.

Рассматривая с точки зрения полной системы структуру ударной волны SII  (для которой считается, что течение между двумя однородными состояниями равновесно), видим, что она будет непрерывной, ести
u(2)af(2)<U<u(1)+af(1).

Поскольу, согласно SII-условиям  па разриве, U>u(2), существенно только ограничение сверху. Замороженная ударная волиа SI возникает в передй  части профиля и будет сопровождаться областью непрерывной релаксации, когда
U>u(1)+af(1).

Этот критерий можно записать в виде
M=Uu(1)ae(1)>af(1)ae(1)=(γfγe)1/2.

Дэя двухатомюй молекулы две вращательые степени свободы могут отставать от трех поступательных степеней, и это можно описать, положив α=3,αr=2. Замороженная и равновесные скорости звука равны соответственно
af2=53pρ,ae2=75pρ.

Критерий (10.50) предсказывает полностью релаксационный гладкий профиль, когда
M<1,091,

и разрыв, сопровождаемый областью релаксации, когда M превосходит это критическое значение. При учете вязкости и теплопередачи этот разрыв переходит в тонкий подслой.

Гриффитс, Брикл, Бләкмен и Кенни (см. Гриффитс, Брикл и Блэкмен [1], а также Гриффитс и Кенни [1]) опубликовали результаты әкспериментальных наблюдений за колебательной релаксацией в CO2. В этом случае α следует положить равным 5 , чтобы включить и поступательные, и вращательные степени свободы; колебательные движения устанавливаются значительно дольше. При 300 Kαr следует положить равным 21 ). Критическое значение для M равно 1,043 , и экспериментальные наблюдения, описанные в цитированных выше работах, подтверждают это c достаточной точностью. (Дальнейшие детали можно найти в указанных выше статьях и в превосходной работе Лайтхилла [5].)

Таким образом, мы убедились в том, что введение в рассмотрение волн, учитывающих различного рода дополнительные эффекты, и выяснение роли, которую играет каждая из этих волн, приводит к сравнительно простым предсказаниям важных явлений в чрезвычайно сложных ситуациях.
1) При этой температуре четыре степени свободы обладают только половиной своей классической энергии, так что выбор αr=2 является оправданным.

1
Оглавление
email@scask.ru