Главная > АСИМПТОТИЧЕСКИЕ МЕТОДЫ НЕЛИНЕЙНОЙ МЕХАНИКИ (Н. Н.МОИСЕЕВ)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Рассмотрим в качестве примера задачу о линейном демпфировании нелинейных колебаний. Пусть движение описывается уравнением
z¨+f(z)=εcz˙,

где c — некоторая положительная постоянная. Это уравнение является частным случаем рассмотренного выше уравнения (2.1), когда функция φ(z,z˙)=cz˙=cωQy. Напишем для этой задачи первое из укороченных уравнений
x˙=εcω2πΔ02πQy2dy.

В явном виде мы не можем проинтегрировать в общем случае это уравнение, но можем сделать некоторые заключения. Интеграл в уравнении (2.12) — всегда положительное число
02πQy2dy=Φ(x)>0

Далее, ω(x)>0 по смыслу своего определения. Теперь отметим, что x — это некоторое новое переменное, которое при ε=0 превращается в постоянную интегрирования порождающего уравнения. Мы назвали ее условно амплитудой по аналогии с теорией линейных колебаний. В этом есть определенный смысл. В самом деле, мы только что установили, что полная энергия порождающего уравнения зависит только от этой постоянной. Значит точно так же, как амплитуда в линейных колебаниях, именно эта постоянная или любая ее однозначная функция определяют энергию системы. Следовательно, она играет ту же роль, что и амплитуда.

Предположим теперь, что в начальный момент времени энергия E в системе была равна некоторому значению E0, и пусть в течение некоторого времени она находилась под действнем диссипативной силы φ=εcz˙. Вычислим производную в силу укороченных уравнений (2.12), принимая во внимание найденное выше выражение Ex=ω(x)Δ :
dEdt=Exx˙=ωΔx˙=εcω22πΦ(x)<0.

Следовательно, под действием силы φ=εcz˙ энергия системы непрерывно убывает.

Формула (2.13) позволяет для каждого фиксированного значения «амплитуды» x определить скорость убывания энергии. Что касается величины «амплитуды» x, то она в этом случае может и не убывать. Характер изменения этой величины, как это следует из уравнения (2.12), определяется только знаком Δ(x). Это обстоятельство подчеркивает тот факт, что физический смысл «амплитуды» может не иметь никакого отношения к максимальному отклонению от положения равновесия, которое всегда убывает под действием диссипативной силы.

1
Оглавление
email@scask.ru