Главная > Теоретическая механика. Динамика системы. Аналитическая механика, Т.2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

327. Примеры.

1°. Отсутствие внешних сил. Наиболее простое предположение, которое мы можем сделать, это то, что на систему не действуют никакие внешние силы. Тогда центр тяжести системы будет совершать прямолинейное и равномерное движение. Если, например, считать, что действия звезд на солнечную систему равны нулю, то центр тяжести этой системы, который расположен весьма близко от Солнца, будет совершать прямолинейное и равномерное движение.

2°. Тяжелая система в пустоте. Рассмотрим теперь систему тяжелых точек, брошенных в пустоте. Каковы бы ни были деформации и внутренние связи системы, ее центр тяжести будет описывать параболу с вертикальной осью. Действительно, различные внешние силы вертикальны; если их перенести в центр тяжести, то они будут иметь равнодействующую следовательно, центр тяжести будет двигаться как тяжелая точка массы Например, если в пустоте брошена бомба и она в некоторый момент времени

взрывается, то центр тяжести осколков будет продолжать описывать ту же самую параболу, так как силы, возникающие при взрыве, являются внутренними. Точно так же, если живое существо движется в пустоте под действием только веса, то его центр тяжести будет описывать параболу и мышечные усилия, которые оно будет производить, не изменят траектории его центра тяжести, так как эти усилия являются внутренними силами.

3°. Притяжение, пропорциональное расстоянию. Возьмем еще систему материальных точек, притягиваемых неподвижным центром О пропорционально массам и расстояниям Внешние силы суть центральные силы притяжения Перенесем эти силы в центр тяжести Тогда, как мы видели в статике, их равнодействующая будет направлена вдоль и будет иметь значение Следовательно, центр тяжести перемещается как материальная точка, притягиваемая точкой О пропорционально расстоянию; она описывает эллипс с центром в точке О.

Примечание. В двух предыдущих примерах мы смогли определить движение центра тяжести, ничего не зная ни о связях, ни о внутренних силах. Это оказалось возможным вследствие того, что в указанных случаях правые части уравнений (3) зависят только от . Тогда можно выполнить интегрирование этих уравнений, не зная других уравнений движения. В общем случае так получаться не будет. Правые части уравнений (3) будут зависеть от координат всех точек системы, и эти уравнения дадут лишь только некоторое представление о движении. Такой случай имеет место, например, в задаче о движении двух точек, притягивающих друг друга и притягиваемых неподвижным центром по закону Ньютона. Равнодействующая внешних сил, перенесенных в центр тяжести, зависит в этом случае не только от координат центра тяжести, но и от координат самих точек.

4°. Ходьба (Делоне, Механика — Delaunay, Mecanique). Как мы уже указывали на примере, теорема о движении центра тяжести распространяется и на живые существа. Возникающие при сокращении мышц мускульные усилия являются внутренними силами, попарно равными и прямо противоположными; следовательно, они не оказывают никакого влияния на движение центра тяжести. Поэтому только при помощи внешних тел живое существо может изменить движение своего центра тяжести. Вообразим, например, наблюдателя, стоящего на идеально отполированной горизонтальной плоскости. Все внешние силы, действующие на тело наблюдателя, — вес и нормальные реакции плоскости, вертикальны. Если наблюдатель был вначале неподвижным, а затем пожелал двигаться, то его центр тяжести движется как материальная точка, вначале неподвижная и находящаяся под действием вертикальной силы. Эта точка описывает неподвижную вертикальную прямую, и следовательно, мускульные усилия не изменяют положения горизонтальной проекции центра тяжести, который может лишь подниматься или опускаться. Ходьба в этом случае невозможна. Она становится возможной лишь благодаря трению. Если на негладком грунте человек, сначала неподвижный, заносит вперед одну ногу, то вторая нога стремится отодвинуться назад для того, чтобы горизонтальная проекция центра

тяжести не изменилась. Но вторая нога не может отодвинуться назад иначе, как скользя по грунту. Благодаря этому возникает реакция, отклоненная от вертикали вследствие трения о грунт и направленная вперед. Эта реакция, перенесенная параллельно самой себе в центр тяжести, определяет его движение вперед.

5°. Отдача огнестрельного оружия. Рассмотрим направленное горизонтально орудие массы М. Пусть — масса снаряда и — масса частицы пороха. До сгорания пороха скорость центра тяжести равна нулю. Она должна оставаться такой же и непосредственно после сгорания пороха, так как единственными развивающимися силами будут внутренние, поскольку действие веса и пассивных сопротивлений в течение весьма короткого периода горения можно считать равным нулю. Следовательно, обозначив через и абсолютные значения начальных скоростей орудия, снаряда и частицы получим:

гак как знаки скоростей снаряда и частиц пороха, очевидно, противоположны знаку скорости орудия. Знак обозначает суммирование, распространенное на все частицы заряда. Так как скорость неизвестна и масса заряда не достигает четверти массы то можно приближенно принять равным среднему алгебраическому Таким путем получаем уравнение

определяющее отношение скоростей V и

6°. Упражнение. На идеально отполированную горизонтальную плоскость положена прямолинейная соломинка длины 11 и массы (рис. 183).

Рис. 183.

Насекомое М той же массы, рассматриваемое как точка, находилось вначале неподвижно на конце А. В момент оно начало перемещаться от А к В, совершая вдоль равноускоренное движение Каково движение системы?

Так как единственными внешними силами являются вес и нормальные реакции горизонтальной плоскости, то горизонтальная проекция центра тяжести остается неподвижной. Более того, из соображений симметрии очевидно, что соломинка будет перемещаться только вдоль своего первоначального направления. Примем это направление за ось обозначим через координату середины С отрезка и координату точки М и пусть — значения этих координат в момент Имеем:

Так как

то, следовательно, получим:

Реакция соломинки на насекомое получается сразу; обозначив эту реакцию через X и написав уравнение движения точки М, получим:

1
Оглавление
email@scask.ru