Главная > Теоретическая механика. Динамика системы. Аналитическая механика, Т.2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

339. Случай интегрируемости Ковалевской.

В работе, премированной в 1888 г. Парижской Академией наук и помещенной в т. XII Acta mathematica, Ковалевская рассмотрела новый случай интегрируемости уравнений движения тяжелого твердого тела вокруг неподвижной точки. Приведем сначала форму уравнений движения, из которой исходила Ковалевская.

Обозначим, как и раньше, через косинусы углов, которые образуют связанные с телом оси с направленной вертикально вверх неподвижной осью а через — постоянные значения координат центра тяжести относительно этих осей. Проекции веса Р на подвижные оси равны

и моменты его относительно тех же осей

Три уравнения Эйлера принимают вид

К этим уравнениям присоединим три других, указанных уже Пуассоном. Если на оси отложить отрезок равный единице, то конец Н этого отрезка будет иметь относительно подвижных осей координаты Проекции на эти оси относительной скорости точки Н относительно подвижных осей равны

Проекции на подвижные оси переносной скорости той же точки в системе подвижных осей равны

Проекции на подвижные оси абсолютной скорости этой точки равны суммам проекций относительной скорости и переносной скорости (п. 45). Но так как точка Н неподвижна, то ее абсолютная скорость равна нулю. Следовательно, имеем

Эти уравнения, присоединенные к уравнениям (58), образуют систему шести уравнений первого порядка, Определяющих в функции

Для этой системы известны из общих теорем два интеграла, алгебраических относительно . Это — интеграл энергии и интеграл площадей В горизонтальной плоскости . К этим интегралам мы можем присоединить очевидное соотношение

Вопрос сводится к нахождению нового интеграла. В случае Лагранжа и Пуассона этим новым интегралом является . В случае Ковалевской также предполагается, что эллипсоид инерции является поверхностью вращения, но к этому добавляется более сильное требование, чтобы

Кроме того, предполагается, что центр тяжести лежит в экваториальной плоскости, так что . В этом случае можно всегда выбрать в качестве связанной с телом оси ось расположенную в плоскости экватора и тем самым сделать так, что Тогда три уравнения (58), если положить примут вид

Умножая второе на и складывая с первым, получим

Точно так же, умножая второе из уравнений (59) на и складывая первым, получим

Исключая из этих двух уравнений, приходим к следующему;

или

Меняя l на —l, получим второе соотношение такой же формы. Складывая это второе соотношение с первым, получаем

откуда, интегрируя и потенцируя, находим

Мы имеем таким образом новый алгебраический интеграл. Задача, как это показано в работе Ковалевской, может быть теперь закончена при помощи квадратур. Наиболее простые способы приведения к квадратурам даны Кёттером (К Otter, Acta math., т. XVII) и Колосовым (Math. Annalen, т. LVI).

Общий случай. Хюссон (Husson) доказал, что кроме рассмотренных нами трех случаев (случай Эйлера и Пуансо, случай Лагранжа и Пуассона, случай Ковалевской) нельзя получить для движения тяжелого тела с закрепленной точкой при произвольных начальных условиях третий алгебраический интеграл, отличный от интеграла энергии и интеграла моментов (см. Husson, Recherche des integrates algebriques dane le mouvement d’un solide pesant au-tour d’un point fixe. Th6se, Annales de la Faculty des Sciences de Toulouse, 2-e serie, т. VIII, 1906; Sur un th6orfeme de M. Poincar6 relativement au mou-vement d’un solide pesant, Acta mathematica, т. XXXI, 1908).

Можно также указать на две статьи Штекеля (PaulStасkе1, Ausge-zeichnete Bewegungen des schweren unsymetrischen Kreisels, Mathematische Annalen, т. LXV, 1908; Die reduzierten Differentialgleichungen der Bewe-gung ..., там же, т. LXVII, 1909).

Частные начальные условия. Частные начальные условия позволяют выполнить интегрирование в случаях, отличных от трех классических. Так, для частного случая, характеризуемого условиями , можно привести интегрирование к квадратурам, если постоянная площадей на горизонтальной плоскости равна нулю. См. статью Колосова Sur le cas de М. Оо-riatchoff de la rotation d’un corps pesant autour d’un point fixe (Rendiconti del Circolo di Palermo, 10 августа 1902) с последующими заключениями Марко-лонго.

Другой частный случай указан в статье Николая Ковалевского Eine neue particulare Losung (Math. Annalen, т. LXV, 1908).

1
Оглавление
email@scask.ru