III. Приложение принципа Даламбера к случаю трения скольжения
439. Метод и пример.
Рассмотрим систему, на которую наложены связи двух видов:
1°. Связи
без трения, зависящие или не зависящие от времени.
2°. Связи
заключающиеся в том, что некоторые точки
вынуждены скользить с трением по заданным поверхностям
Полная реакция
поверхности
действующая на точку
является равнодействующей нормальной силы
и касательной силы (трение), направленной в сторону, противоположную скорости точки и равной
где
коэффициент трения по поверхности
Точно так же получаются полные реакции
других поверхностей на другие точки
По принципу Даламбера в каждый момент существует равновесие между силами инерции, заданными силами, реакциями связей
без трения и реакциями
связей
Если, следовательно, системе сообщить произвольное возможное перемещение, то сумма работ всех сил, включая реакции связей, равна нулю. Но если, в частности, сообщить системе произвольное перемещение, допускаемое связями
без трения и такое, что каждая точка
вынуждена перемещаться нормально к соответствующей полной реакции
то сумма работ реакций связей
и сил
будет отдельно равна нулю, и поэтому будет равна нулю также сумма работ заданных сил и сил инерции. Следовательно, уравнения движения получатся, если написать, что для всех возможных перемещений, которые допускаются связями
которых каждая точка ту,
перемещается нормально к соответствующей полной реакции
сумма работ заданных сил и сил инерции равна нулю. (Аппель, Comptes rendus, т. CX1V, 1892, стр. 331.)
Пример. С этой точки зрения рассмотрим еще раз задачу III
(рис. 214). В йтой задаче точки А и В скользят с трением по осям
Полная реакция
оси
действующая на точку А, является биссектрисой угла
а полная реакция
оси
действующая на точку В, является биссектрисой угла
Чтобы получить возможное перемещение лестницы, при котором работы реакций
и
равны нулю, нужно сообщить ей такое возможное перемещение, при котором А и В перемещаются нормально к реакциям
и
. По свойству мгновенного центра вращения это приводится к тому, чтобы повернуть лестницу на бесконечно малый угол вокруг точки
пересечения реакций
и
Так как уравнения прямых, вдоль которых направлены эти реакции, суть
то для координат точки
имеем:
Теперь нужно выразить, что при возможном перемещении, которое получится, если прямую
повернуть вокруг точки
на бесконечно малый угол, сумма работ веса и сил инерции равна нулю. Это означает, что равна нулю сумма моментов относительно точки
веса и сил инерции. Если обозначить через
всю массу лестницы и через
массу точки лестницы с координатами х и у, то получим
где сумма распространена на все точки. Замечая, что величины
Равны соответственно величинам
и заменяя
их значениями, мы получим после сокращений уравнение (5) п. 371 (пример III).