Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
393. Уравнение герполодии.Пуансо получил дифференциальное уравнение герполодии. заметив, что выражение дуги этой кривой функции радиуса От идентично выражению дуги полодии в функции того же радиуса, так как обе кривые катятся одна по другой. Мы применим другой метод, приводящий к несколько более коротким вычислениям, который мы заимствуем из заметки Дарбу к «Механике» Депейру (Despeyrous). Пусть, как и выше,
Так как
Обозначим, как и выше, через Р проекцию точки О на неподвижную плоскость II, которая содержит герполодию, и обозначим через
то имеем следующие уравнения:
из которых первое выражает, что Разрешая эти уравнения относительно
получим:
Мы предположили, что герполодии колеблется между минимумом
или, принимая во внимание уравнения (32),
Это уравнение, если заменить в нем х, у, z через их значения (34) и
Полученное уравнение позволяет найти Чтобы найти другое выражение, содержащее полярный угол
С другой стороны, так как конус мгновенных осей От в теле катится по неподвижному конусу с вершиной в точке О и с герполодией в качестве основания, то плоскость Так как плоскости
Вычислим правую часть. Сначала находим
Далее, в силу уравнений, выводимых из уравнений Эйлера, и в силу уравнений (32) получаем:
Величина, заключенная в скобках, равна
Аналогичные выражения найдем путем перестановки букв для
Заменим, наконец, в этом равенстве
где Е обозначает постоянную Соотношения (35) и (38) определяют
которое позволяет найти Таким образом, можно построить герполодию и проверить, что она не имеет точек перегиба, для чего нужно вычислить радиус кривизны в функции Если эллипсоид инерции заменить произвольным эллипсоидом или гиперболоидом, который заставляли бы катиться и вертеться по неподвижной плоскости П, то соответствующая герполодия может иметь точки перегиба или возврата. Может также случиться, что радиус-вектор В частном случае, когда
и, полагая
Это — уравнение спирали, изображенной на рис. 230. Уравнения (35) и (38) можно получить, исходя также Герполддиограф Дарбу и Кёнигса. Картина движения, которую дал Пуансо, обладает тем недостатком, что в ней не представлено время. Действительно, если материально осуществить оба конуса, имеющих вершины в точке О, а основаниями полодию и герполодию и если при помощи какого-нибудь сцепления заставить один из них катиться по другому, то еще не будет получаться полное представление движения, так как, кроме того, необходимо катящемуся конусу сообщить мгновенную угловую скорость, которая в каждое мгновение пропорциональна От. Дарбу доказал (заметка в Mecanique de Despeyrous), что можно построить прибор, выполняющий это условие, если к предыдущему представлению движения присоединить другое представление, также принадлежащее Пуансо. Пусть, как и раньше,
Рис. 231. Следовательно, движение тела представляется качением конуса Проверим теперь, будет
и так как эта точка лежит в плоскости П, параллельной касательной плоскости к эллипсоиду в точке
Мы обозначили через I общее значение отношений (40). Определим из них
На основании уравнений (29) и (30) полодин, первый член этого отношения равен 1, а второй равен
и из соотношений (40) получаем для координат точки
Таким путем можно определить геометрическое место точек
то геометрическое место точек
Таково уравнение конуса Установив это, вернемся к движению. Сопоставляя оба способа воспроизведения движения, данных Пуансо, мы вндим, что, в то время как центральный эллипсоид катится по неподвижной плоскости П, конус Допустим теперь, что конус Для этого достаточно подходящим образом выбрать эллипсоид и плоскость, по которой он катится. Этим путем можно получить легко заметные изменения угловой скорости, так как она удваивается или увеличивается в пять раз. Но в случае движения твердого тела катящийся эллипсоид является эллипсоидом инерции, и для него Исследования Альфена а Гринхилла. Гринхилл, интересные исследования которого о случае, когда задача о сферическом маятнике приводится к псевдоэллиптическому интегралу, мы уже цитировали, указал также случай, когда и задача Пуансо приводится к псевдоэллиптическому интегралу. Эти исследования изложены в его «Эллиптических функциях» (Fonctions ellip-tiques) и в работе «On pseudo-elliptic integrals and their dynamical applications (Proceedings of the London Mathematical Society, т. XXV). Наиболее простой случай, приводящий к алгебраической герполодии четвертого порядка, отмечен впервые Гальфеном (Halphen). В этих исследованиях, имеющих исключительно геометрический и аналитический характер, Гальфен и Гринхилл предполагают, что по неподвижной плоскости П катится произвольная центральная поверхность второго порядка, так что в уравнении этой поверхности
коэффициенты произвольны и могут быть отрицательными (см. Halphen, Fonctions elliptiques, т. II, стр. 282). Теорема Сильвестра. Сильвестр показал, что оба способа воспроизведения движения, предложенные Пуансо, являются частными случаями бесконечного множества других, которые могут быть получены следующим образом: построим поверхность второго порядка, подобную поверхности второго порядка, софокусной с эллипсоидом инерции, и заставим ее катиться и вертеться по плоскости П, параллельной неподвижной плоскости П, находящейся на постоянном расстоянии
|
1 |
Оглавление
|