354. Пример I.
Тяжелая система в пустоте. Если бросить в пустоте произвольную свободную тяжелую систему, то ее центр тяжести будет описывать параболу. Проведем через центр тяжести оси с постоянными направлениями, причем ось
направим по вертикали вверх. К относительному движению системы по отношению к этим осям можно применить теорему кинетической энергии. Единственными внешними силами будут силы веса, причем проекции веса точки
на подвижные оси равны
Имеем:
Но так как начало находится в центре тяжести, то суммы
равны нулю и, следовательно,
Таким образом, кинетическая энергия в относительном движении по отношению к осям
изменяется только вследствие действия внутренних сил. Если система является твердым телом, то относительная кинетическая энергия остается постоянной.
Пример II.
Исследовать движение в пустоте двух тяжелых точек А и В одинаковой массы
связанных друг с другом невесомой и упругой нитью. Пусть длина нерастянутой нити равна
, и допустим, что когда она вытягивается до длины
, ее натяжение пропорционально ее удлинению
Когда нить растянута до длины
обе точки брошены в пустоте.
Тогда центр тяжести О, совпадающий с серединой
будет описывать параболу как тяжелая точка.
В относительном движении по отношению к осям
постоянного направления, проведенным через
главный момент
относительно точки
количеств относительных движений остается постоянным по величине и направлению (п. 350, пример 5°) и теорема площадей применима к проекциям движения на каждую из трех координатных плоскостей.
Если через
обозначить координаты точки А, то координаты точки В будут
и теорема площадей выразится тремя уравнениями:
Отсюда находим
Это показывает, что прямая
все время остается в некоторой плоскости П постоянного направления, проходящей через О. Эта плоскость, перпендикулярная к
является для относительного движения плоскостью максимума площадей. При этом указанное свойство не зависит от внутренних сил, т. е. от взаимодействия обеих точек.
Примем в таком случае эту плоскость П за плоскость
и выберем в ней две осн
с постоянными направлениями. Обозначим через
полярные координаты точки А в этой плоскости. Координатами точки В будут
Уравнение площадей имеет вид
Применим теорему кинетической энергии в относительном движении вокруг центра тяжести. Элементарные работы сил веса равны нулю (пример I). Следовательно, достаточно вычислить работу обеих сил натяжения нити, действующих на точки А и В. Эти натяжения играют роль взаимного притяжения обеих точек и имеют алгебраическое значение
Обе точки вследствие симметрии имеют, очевидно, одну и ту же относительную скорость
по отношению к осям
Следовательно,
так как расстояние между точками равно
Интегрируя, получаем:
или, наконец, заменяя
его выражением в полярных координатах, получим:
Оба уравнения (1) и (2) определяют
в функции
Если желательно найти относительную траекторию одной из этих точек в плоскости П, то достаточно будет исключить из этих уравнений
Таким путем получается дифференциальное уравнение траектории
где нужно взять знак или — в зависимости от того, будет ли с возрастанием
величина
также увеличиваться или, наоборот, уменьшаться.
При начальном значении
многочлен, стоящий под корнем, положителен. Так как при
и при
этот многочлен отрицателен, то
очевидно, что
должен заключаться между двумя корнями
и может изменяться только от одного из них до другого. Согласно уравнению
всегда изменяется в одном направлении и кривая аналогична той, которую описывает горизонтальная проекция сферического маятника (п. 227, рис. 170).
Необходимо, однако, заметить, что в наших формулах существенно предполагается, что
все время больше, чем I. Если
в какой-нибудь момент времени делается равным I, а затем становится меньше I, то нить не будет натянута, сила Т исчезнет, как если бы
обратился в нуль, обе тяжелые точки станут независимыми и, начиная с этого момента, относительные траектории в плоскости П обратятся в отрезки прямых до того момента, пока нить снова не натянется и вновь не возникнет сила Т. В этом случае относительная траектория будет попеременно складываться из дуг кривой (3), когда
и из отрезков прямых, соединяющих эти дуги, когда
Для того чтобы такой случай мог представиться, необходимо и достаточно, чтобы величина I заключалась между корнями а и
многочлена, между которыми изменяется
Рис. 196.
Пример III.
Найти движение двух тяжелых материальных точек А и В одинаковой массы
связанных прямым невесомым стержнем длины
и вынужденных скользить без трения, одна А — по неподвижной вертикальной оси
а другая В — по неподвижной горизонтальной оси
Внешними силами, приложенными к системе, являются веса
обеих точек и нормальные реакции Р и
обеих осей (рис. 196). Так как система имеет полные связи, не зависящие от времени, то достаточно применить теорему кинетической энергии в абсолютном движении. Центр тяжести О системы является серединой
расстояние
и угол
имеет некоторое переменное значение 0. Координата точки А будет
, точки
и кинетическая энергия системы равна
Элементарная работа веса
точки А равна
или —
а элементарная работа веса точки В равна нулю. Следовательно, уравнение кинетической энергии будет
что после интегрирования и деления на
принимает вид
где
— постоянная. Это уравнение идентично уравнению движения математического маятника длины
. Движение будет колебательным или круговым в зависимости от того, будет ли
заключено между —1 и
или больше 1.
Примечание. Можно также воспользоваться теоремой кинетической энергии в относительном движении вокруг точки
Кинетическая энергия
относительного движения по отношению к осям
постоянного направления, проведенным из точки
равна
Сумма элементарных работ весов обеих точек А и В на относительном перемещении относительно этих осей равна нулю, но работа нормальных реакций Р и
на этом относительном перемещении будет, наоборот, отлична от нуля, так как относительные элементарные перемещения точек А и В для наблюдателя, связанного с осями
являются дугами окружностей, описанными из
как центра радиусами и А и
и эти дуги не перпендикулярны к силам Р и
Следовательно, если написать уравнение кинетической энергии для относительного движения по отношению к осям
то оно будет содержать Р и
Замечая, что точка А имеет относительно этих осей координаты
а точка В — координаты
и что силы Р и
имеют проекции
получим для элементарных работ этих сил величину
Искомое уравнение кинетической энергии будет
Реакции Р и
входят в это уравнение, которое может быть использовано совместно с другим для их определения. Но проще вычислить Р и
непосредственно, напнсав уравнение абсолютного движения центра тяжести
в проекциях на оси
Таким путем получаются уравнения:
где
Вычислив вторые производные по
от
и заменив
и их значениями, взятыми из равенства (4), получим Р и
в функции 0.
Знаки реакций
определяют направления этих реакций, которые на рис. 196 изображены так, как если бы они обе были положительными.
После вычисления
получим:
Но уравнение (4) после дифференцирования по
сокращения на множитель принимает вид
Подставляя выражения (4) и (5) в формулы для
и Р, найдем:
Натяжение стержня. Обозначим через Т натяжение стержня. На точку А действуют три силы: ее вес, реакция Р и сила Т, считаемая положительной от А к В. Написав уравнение движения точки А в проекции на ось
получим:
так как проекция ускорения точки А равна нулю. Отсюда