Главная > Дифференциальная геометрия: первое знакомство
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

6°. Движение заряженной частицы в электромагнитном поле

Рассмотрим движение заряженной частицы массы с зарядом в пространстве под воздействием электрического поля и магнитного поля

На точку действуют следующие силы: электрическая сила, — сила, действующая на точку по закону Лоренца (с — скорость света).

Поэтому векторное уравнение движения имеет вид

Умножим обе части равенства (24) скалярно на вектор и получим

Так как скорость частицы) и то найденное соотношение примет вид

Отсюда следует, что если электрическое поле равно нулю, то скалярная скорость частицы постоянна. В этом случае время можно заменить параметром, пропорциональным длине дуги траектории. Действительно, и если то т. е.

Проанализируем теперь случай, когда и магнитное поле создается единственным магнитным полюсом. Эту ситуацию можно представить себе так. Пусть имеется магнит со слабой напряженностью магнитного поля. Тогда вблизи одного из

полюсов магнита магнитное поле фактически будет создаваться этим близким магнитным полюсом.

Расположим начало координат в этом полюсе. Тогда

где постоянная,

Предложенное выражение для магнитной напряженности естественно: в рассматриваемом случае поле будет центральным и его структура будет такой же, как и структура поля тяготения из пункта 5°.

Векторное уравнение движения имеет вид

Так как

то векторное уравнение движения можно записать в следующей форме:

где

Умножим обе части соотношения (25) векторно на привлекая формулу для двойного векторного произведения, получим

Отсюда после интегрирования приходим к соотношению

где а — постоянный вектор.

Умножая обе части последнего равенства скалярно на вектор получим

В этом соотношении радиус-вектор движущейся точки, длина вектора так что где единичный вектор, сонаправленный вектору Заменяя в формуле (26) вектор на и сокращая затем на получим

Так как — постоянный вектор, единичный, то последнее равенство можно переписать в следующем виде:

где угол между векторами

Заметим, что угол постоянный. Следовательно, постоянным будет и угол между векторами а и Это означает, что траектория движущейся точки расположена на круговом конусе с осью а и углом раствора

Задача. Доказать, что траектория точки является геодезической линией конуса — кривой, которая при развертывании конуса на плоскость разворачивается в прямую.

1
Оглавление
email@scask.ru