Главная > Введение в теорию квантованных полей
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

29.4. Индекс диаграммы и степень расходимости.

Для конкретизации оператора A (G) введем еще понятие индекса диаграмм мы. Перейдем с этой целью к импульсному представлению. Коэффициентные функции T-произведения в -представлении, очевидно,

будут иметь вид

Здесь в аргументах -функций стоят алгебраические суммы импульсов внутренних линий диаграммы, сходящихся в вершины q, к которым добавлены внешние импульсы .

В соответствии с принятой нами процедурой регуляризации -функций имеем также

где — тот же полином степени , что и в нерегуляризованной -функции.

Если в (11) перейти к пределу то весь интеграл может оказаться расходящимся при больших импульсах. Подсчитаем сейчас суммарную степень его расходимости. Поскольку мы рассматриваем связные диаграммы, с помощью S-функций снимается интеграций (одна остающаяся S-функция выражает закон сохранения полного 4-импульса) и остается независимых переменных интеграции, где L обозначает полное число внутренних линий.

Подобно тому как при интеграции по трехмерному пространству в качестве переменной интеграции вводится радиус, введем при выполнении интеграции по -мерному пространству соответствующий «радиальный» импульс Р. Тогда произведение независимых дифференциалов даст множитель .

Учитывая лишь старшие степени импульсов в функциях , получаем множитель

и поэтому при выполнении интеграции по Р множитель при при больших Р будет возрастать или убывать как

Интеграл по Р окажется, таким образом, расходящимся, если

и сходящимся при

Число

мы назовем индексом диаграммы G.

Разумеется, из сходимости интеграла по Р еще не следует сходимость интеграла типа (11) в целом.

Здесь может возникнуть положение, подобное тому, когда при вычислении интеграла

интеграл

по радиальной переменной сходится, но остающийся интеграл по из-за особенности в точке оказывается расходящимся.

Индекс диаграммы и (G) можно связать также с условной степенью роста по импульсу. Для ее подсчета умножим все импульсы и массы на некоторое число а и подсчитаем, на какой множитель изменится интеграл (11), не учитывая регуляризации и принимая во внимание лйшь высшую степень а. Нетрудно видеть, что этот множитель равен как раз

Таким образом, индекс диаграммы в точности равен условной степени роста.

Заметим, что степень роста называется условной потому, что оценка (13) проводится чисто формально, без тщательного анализа сходимости интеграла, и не учитывает наличия логарифмически расходящихся факторов.

Обратим внимание на тот факт, что при разбиении G на обобщенных узлов:

мы будем иметь

причем вторая сумма в правой части распространяется по всем линиям, соединяющим обобщенные узлы

Рассмотрим, далее, коэффициентную функцию . В импульсном представлении она имеет вид

где — некоторый полином по компонентам .

Как мы увидим позже, для компенсации расходимостей в T-произведении достаточно выбрать в качестве полином степени и . Из (14) следует, что при таком выборе ни суммарная степень расходимости, ни условная степень роста по импульсу не увеличатся от приложения операции , а следовательно, и (G) не увеличивается от приложения операции R (G) в целом.

Как мы уже убедились на рассмотренных выше примерах, при анализе и вычислении интегралов типа (И) удобно пользоваться интегральным представлением причинных функций (мы будем называть его ниже «а-представлением»)

где

Удобно представить множитель в экспоненциальном виде. Для этого воспользуемся соотношением

После этого интеграция по внутренним импульсам в (11) сведется к квадратурам гауссова типа

и останутся только интеграции по переменным

Выполняя интеграцию по находим, что

где F является полиномом по k и рациональной функцией от а, обладающей неинтегрируемыми полюсами при обращении в нуль некоторых а. Ввиду того, что сходимость интеграла (16) при больших

а обеспечивается факторами возможные его расходимости в нерегуляризованном случае в данном представлении обусловливаются наличием именно этих неинтегрируемых полюсов.

Чтобы выяснить структуру особенности в нерегуляризованной коэффициентной функции, введем новые переменные

и, фиксировав подсчитаем степень полюса в точке Переходя для этого в (15) к новым «импульсам»

представим левую часть (15) в виде

Выполняя интегрирование по получаем после сокращения на при малых X

Таким образом, эффективная степень полюса по X при с учетом значения детерминанта

действительно определяется индексом диаграммы

1
Оглавление
email@scask.ru