Главная > Некоторые основные задачи математической теории упругости
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

III. МНОГОЗНАЧНЫЕ СМЕЩЕНИЯ. ТЕМПЕРАТУРНЫЕ НАПРЯЖЕНИЯ

§ 45. Многозначные смещения. Дислокации.

Условие однозначности смещений, которое мы до сих пор считали всегда выполненным, кажется на первый взгляд совершенно неизбежным с физической точки зрения. Мы увидим, однако, что можно дать весьма простую физическую интерпретацию и многозначным смещениям.

Будем по-прежнему считать, что компоненты напряжения и, следовательно, компоненты деформации — однозначные функции в области, занятой телом; точнее, будем считать, что соблюдены все условия, перечисленные в п. 2 § 30, кроме условия однозначности смещений.

Напомним, что в случае односвязной области однозначность компонент смещения является необходимым следствием остальных принятых нами условий (см. § 30). Поэтому нам остается рассмотреть случай многосвязной области. Как и в § 35, мы будем предполагать, что область занятая телом, ограничена несколькими простыми замкнутыми контурами из которых последний охватывает остальные.

Рис. 19.

Напомним, что в § 35, при выводе формул мы не опирались на условие однозначности смещений; это условие было введено лишь начиная с формулы (7). Поэтому, в частности, формулы (3) и (4) § 35 сохраняют силу и при тех условиях, которые мы рассматриваем теперь.

Для того, чтобы изучить характер многозначности компонент смещения, превратим (мысленно) область в односвязную, проведя разрезов (купюр) соединяющих контуры с внешним контуром и не пересекающих друг друга (рис. 19) (эти купюры можно провести и иным образом, например, соединить какую-нибудь точку контура с какой-нибудь точкой контура затем какую-нибудь точку контура с какой-нибудь точкой контура дойдя таким образом до какой-нибудь точки контура но мы для простоты будем проводить купюры, как указано выше).

В разрезанной таким образом области функции а следовательно, и смещения, будут однозначны. На каждой купюре мы будем различать

два края, которые будем отмечать значками (+) и (-), причем эти обозначения будем выбирать так, чтобы, идя (оставаясь в разрезанной области) от какой-либо точки края (-) купюры к соответствующей точке края (+) той же купюры (т. е. к точке с теми же координатами х, у), приходилось огибать контур против часовой стрелки.

При таком обходе на основании формулы (6) § 35 будем иметь:

где действительная, комплексные постоянные, фигурирующие в формулах (3) и (4) § 35; обозначают значения компонент смещения соответственно в точке края (+) и точке края (-), которые совмещены в геометрической точке

Формулу (1) можно переписать так:

где

Физическая интерпретация полученных многозначных смещений не представляет никаких затруднений А именно, чтобы получить объяснение таких смещений, достаточно предположить, что вдоль каждой купюры спаяны два края тела, получившихся благодаря тому, что из тела до его деформации была удалена (весьма узкая) полоса, края которой и (рис. 19) были конгруэнтны и так расположены, что линия получается из путем жесткого перемещения, состоящего из поворота на угол вокруг начала координат и из поступательного перемещения с компонентами Подразумевается, что перед спайкой были совмещены те точки краев, которые соответствуют друг другу при только что указанном жестком перемещении. Обозначения выбраны нами так, что линия обращается после деформации в край (-) купюры а линия в край

Для простоты выше мы говорили об удалении полосы с краями и Но при некоторых значениях может случиться, что

(до деформации) край заходит за край так, что фактически приходится не удалять полосу, а прибавлять. Может также случиться, что край заходит за край лишь частично; тогда приходится удалять в одном месте и прибавлять в другом. Однако для краткости мы в дальнейшем будем говорить только об «удалении» полосы. Ясно также, что при наложении краев конечные точки этих линий могут не вполне совпасть друг с другом, так что после спайки на границах области могут образоваться (малые) зазубрины, на которые мы не будем обращать внимания.

Указанная интерпретация многозначных смещений в частном случае кругового кольца указана впервые Тимпе (Timpe [I]). Несколько позднее Вольтерра 2) получил более общие результаты, относящиеся к многосвязным телам произвольного вида. Этот автор называет описанный нами вид деформации тела «distorsion». Ляв (Love [1]) предложил вместо этого термин «дислокация» (dislocation), которым мы и будем пользоваться.

Отметим следующее важное свойство дислокаций, указанное Вольтерра. Если переместить купюры и изменить их форму, так, однако, чтобы точки оставались соответственно на контурах и чтобы купюры нигде друг с другом не пересекались, то величины аопределяемые формулами (3), останутся, очевидно, без изменения. Иными словами, величины эти не изменяются при замене одной системы купюр другой, топологически ей эквивалентной.

Мы видели, что при требовании однозначности смещений напряжения внутри тела вполне определяются внешней нагрузкой. Требование однозначности смещений равносильно требованию

Легко видеть, что напряжения будут также вполне определены заданием внешней нагрузки и произвольным заданием (малых) величин действительно, «разность» двух решений (если их существует два) даст, очевидно, решение, для которого внешняя нагрузка отсутствует и

т. е. смещения однозначны. При этих условиях, как мы знаем, напряжения всюду равны нулю.

Величины числом мы будем называть характеристиками дислокации (caracteristiques de la distorsion, по Вольтерра).

Замечание. Сам собой напрашивается вопрос: почему исключена возможность дислокаций в односвязном теле? Ведь можно, например, из круговой шайбы вырезать, скажем, радиальный клин, привести в соприкосновение свободные края и спаять; тогда, конечно, в шайбе возникнут напряжения, и мы будем, по-видимому, иметь дело с таким же случаем, как для многосвязного тела.

Но разница здесь та, что в этом случае напряжения не будут удовлетворять условиям непрерывности, поставленным выше (§ 30), ибо мы видели, что в случае односвязного тела смещения не могут быть многозначными при соблюдении этих условий непрерывности.

Совершенно аналогично следует ответить на вопрос, почему мы ограничились рассмотрением дислокаций, вызванных удалением (или прибавлением) полос с конгруэнтными краями, совмещая края определенным образом.

1
Оглавление
email@scask.ru