Главная > Некоторые основные задачи математической теории упругости
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 4. Уравнения, связывающие компоненты напряжения.

Из элементов теоретической механики известно, что главный вектор и главный момент всех внешних сил, действующих на любое материальное тело, находящееся в равновесии, равны нулю. В случае абсолютно твердого (или, как мы кратко будем говорить, жесткого) тела это условие дает систему шести конечных уравнений, вполне характеризующих состояние равновесия. В случае же деформируемого тела упомянутое условие, если его применять ко всему телу как целому, далеко не дает всех элементов, характеризующих равновесие. Однако из этого условия можно и в нашем случае извлечь уравнения, дающие (в совокупности с законом, выражающим зависимость между напряжениями и деформацией, о чем будет речь впереди) все необходимые соотношения. Но для этого упомянутое условие следует применить не только ко всему телу, как целому, а к каждой части, которую можно мысленно из него выделить.

Во всем дальнейшем будем считать, если противное не оговорено особо, что компоненты напряжения не только непрерывны, но и имеют непрерывные частные производные первого порядка во всей области, занятой телом.

Пусть V — произвольная часть рассматриваемого тела (находящегося, по предположению, в равновесии), ограниченная замкнутой поверхностью Выразим сперва условие, что главный вектор всех внешних сил, действующих на часть V, равен нулю.

Проекция главного вектора объемных сил на ось Ох равна

а проекция главного вектора усилий, действующих на поверхность равна

Вводя в последнюю формулу, вместо выражение из (2) § 3 и приравнивая нулю сумму проекций на ось Ох объемных и поверхностных сил, получаем:

где обозначает внешнюю нормаль.

Но на основании известной формулы Остроградского — Грина

Внося это выражение в предыдущую формулу, получаем, наконец:

Вспомним теперь, что предыдущее равенство должно иметь место для любой области V, выделенной в теле, а это возможно только тогда, когда подынтегральная функция равна нулю в каждой точке тела. Итак, мы получаем уравнения (два последних написаны по аналогии с первым):

Эти уравнения, на которые нам часто придется ссылаться, мы будем называть для краткости уравнениями равновесия.

Применим теперь условие равенства нулю главного момента внешних сил относительно начала координат или, что сводится к тому же, условие равенства нулю главных моментов относительно осей координат.

Написав, что главный момент относительно оси Ох объемных сил и напряжений, действующих на поверхность выделенного объема V, равен нулю, получим:

Но в силу формул (2) § 3

или, преобразуя последний интеграл по формуле Остроградского — Грина,

Внося это значение в соотношение (а) и принимая во внимание уравнения (1), получаем

Так как область V произвольна, то отсюда следует (см. примечание на предыдущей странице):

Две последние формулы получены из первой путем круговой перестановки букв (мы бы их получили непосредственно, применяя предыдущие выкладки к осям

Таким образом, мы видим, что в таблице компонент напряжения

члены, симметричные относительно главной диагонали (идущей от верхнего левого угла к нижнему правому), попарно равны; иными словами, таблица (А) симметрична.

Среди девяти членов таблицы оказывается только шесть различных:

Следовательно, можно сказать, что напряженное состояние в данной точке характеризуется шестью величинами

Формулы (2) можно словесно высказать в виде следующего предложения. Пусть имеются две площадки, проходящие через одну и ту же точку; тогда проекция напряжения, действующего на первую

площадку, на нормаль ко второй равна проекции напряжения, действующего на вторую площадку, на нормаль к первой. Собственно говоря, формулы (2) доказывают непосредственно это предложение только в случае, когда площадки взаимно перпендикулярны (параллельны двум из плоскостей координат). Но легко обобщить этот результат на случай двух любых площадок и получить таким образом только что формулированное предложение.

Действительно, пусть — косинусы направления нормали к первой площадке, а косинусы направления нормали ко второй. Тогда компоненты вектора напряжения действующего на первую площадку, будут на основании формул (2) § 3 равны:

Если принять во внимание соотношения (2), то проекция этого напряжения на нормаль ко второй площадке будет дана формулой:

Полученное выражение, как мы видим, содержит совершенно симметрично величины и и поэтому не изменится, если поменять ролями наши две площадки, а это и доказывает высказанное предложение.

Замечание относительно обозначений. Обозначения для компонент напряжения, принятые нами, были впервые введены Ф. Нейманом (1841 г.) и получили большое распространение. Они приняты, например, в курсах Кирхгоффа (Kirchhoff [1]), Лява (Love [1]) и др. Кроме этих обозначений, применяются и некоторые другие. Мы упомянем только следующие:

которые, как и предыдущие, очень распространены (с теми или иными несущественными видоизменениями) в литературе, особенно современной. Они весьма удобны со многих точек зрения, главным образом потому, что согласуются с современными тензорными обозначениями. Часто вместо пишут

1
Оглавление
email@scask.ru