одно и то же натуральное число, то получится дробь, равная данной. Это свойство называется основным свойством дроби.
Пользуясь основным свойством дроби, иногда можно заменить данную дробь другой, равной данной, но с меньшим числителем и меньшим знаменателем. Такую замену называют сокращением дроби. Например, (числитель и знаменатель мы разделили на одно и то же число 3); полученную дробь снова можно сократить, разделив числитель и знаменатель на , т. е.
В общем случае сокращение дроби возможно, если числитель и знаменатель не взаимно простые числа (см. если же числитель и знаменатель — взаимно простые числа, то дробь называется несократимой: например, - несократимая дробь. Основная цель сокращения дроби — замена данной дроби равной ей несократимой дробью.