Главная > Математика: Справ. материалы
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ГЛАВА II. Прямые и плоскости в пространстве

§ 8 Аксиомы стереометрии и некоторые следствия из них

40. Основные понятия стереометрии.

Основными геометрическими фигурами в пространстве являются точка, прямая и плоскость. На рисунке 116 изображены различные фигуры в

пространстве. Объединение нескольких геометрических фигур в пространстве есть тоже геометрическая фигура, на рисунке 117 фигура состоит из двух тетраэдров.

Плоскости обозначаются строчными греческими буквами:

На рисунке 118 изображены плоскость а, прямые а и и точки А, В и С. Про точку А и прямую а говорят, что они лежат в плоскости а или принадлежат ей. Про точки В и С и прямую 6, что они не лежат в плоскости а или не принадлежат ей.

Введение основной геометрической фигуры — плоскости заставляет расширить систему аксиом. Перечислим аксиомы, которые выражают основные свойства плоскостей в пространстве. Эти аксиомы обозначены в пособии буквой С.

Си Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей.

На рисунке 118 точка А принадлежит плоскости а, а точки В и С не принадлежат ей.

Если две различные плоскости имеют общую точку, то они пересекаются по прямой.

На рисунке 119 две различные плоскости а и Р имеют общую точку А, а значит, по аксиоме существует прямая, принадлежащая каждой из этих плоскостей. При этом если какая-либо точка принадлежит обеим плоскостям, то она принадлежит прямой а. Плоскости а и в этом случае называются пересекающимися по прямой а.

Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну.

На рисунке 120 изображены две различные прямые а и имеющие общую точку О, а значит, по аксиоме существует плоскость а, содержащая прямые а и При этом по той же аксиоме плоскость а единственная.

Эти три аксиомы дополняют рассмотренные в главе I аксиомы планиметрии. Все они вместе являются системой аксиом геометрии.

Пользуясь этими аксиомами, можно доказать несколько первых теорем стереометрии.

Т.2.1. Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну.

Т.2.2. Если две точкй прямой принадлежат плоскости, то вся прямая принадлежит этой плоскости.

Т.2.3. Через три точки, не лежащие на одной прямой, можно провести плоскость, и притом только одну.

Пример 1. Дана плоскость а. Доказать, что существует прямая, не лежащая в плоскости а и пересекающая ее.

Решение. Возьмем в плоскости а точку А, что можно сделать по аксиоме Си По той же аксиоме существует точка В, которая плоскости а не принадлежит. Через точки А и В можно провести прямую (аксиома ). Прямая не лежит в плоскости а и пересекает ее (в точке А).

Пример 2. Дана плоскость а. Доказать, что существует другая плоскость , пересекающая а.

Решение. Возьмем точки А и принадлежащие плоскости а, и точку С, не принадлежащую ей (аксиома ). Точки А, В и С не лежат на одной прямой. Через них по теореме 2.3 можно провести плоскость , и притом только одну. Плоскости имеют общую точку, а значит, по аксиоме плоскости пересекаются.

Замечание. Если допустить, что точка С лежит на прямой то по теореме 2.2 она будет лежать и в плоскости а, что противоречит выбору точки С.

1
Оглавление
email@scask.ru