БИОЛОГИЧЕСКИХ СИСТЕМ МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
— метод описания биологических систем с помощью адекватного математического аппарата. Определение матем. аппарата, адекватно отображающего работу биологических систем, является сложной задачей, связанной с их классификацией. Классификацию биосистем по сложности (логарифму числа состояний) можно провести, пользуясь, напр., шкалой, по которой к простым системам относятся системы, имеющие до тысячи состояний, к сложным — от тысячи до миллиона и к очень сложным — свыше миллиона состояний. Второй важнейшей характеристикой биосистемы является закономерность, выражаемая законом распределения вероятностей состояний. По этому закону можно определить неопределенность ее работы по К. Шеннону и оценку относительной организации. Т. о., биол. системы можно классифицировать по сложности (макс. разнообразию или максимально возможной неопределенности) и относительной организации, т. е. степени организованности (см. Биологических систем организация).
Классификационная диаграмма биосистем:
— простые системы;
— сложные системы;
— очень сложные системы;
вероятностные системы;
вероятностно-детерминированные системы;
детерминированные системы.
На рис. приведена классификационная диаграмма биосистем в осях максимально возможной неопределенности характеризующей число состояний системы и определяемой логарифмом числа состояний, и уровня относительной орг-ции — , характеризующего степень организации системы. На диаграмме даны названия соответствующих полос так, что, напр., область под цифрой 8 означает «очень сложные вероятностно-детерминированные биосистемы». Опыт изучения биосистем показывает, что если , вычисленное по гистограмме распределения отклонений изучаемого показателя от его математического ожидания, лежит в пределах от 1,0 до 0,3, то можно считать, что это детерминированная биосистема. К таким системам относятся системы управления внутр. органами, в основном системы гормонального (гуморального) управления. Нейрон, органы внутр. сферы, системы обмена веществ по определенным параметрам тоже могут быть отнесены к детерминированным биосистемам. Матем. модели таких систем строятся на основе физико-хим. соотношений между элементами или органами системы. Моделированию в этом случае подвергается динамика изменения входных, промежуточных и выходных показателей. Таковы, напр., биофизические модели нервной клетки, сердечно-сосудистой системы, системы управления содержанием сахара в крови и другие. Матем. аппаратом, адекватно описывающим поведение таких детерминированных биосистем, является теория дифф. и интегральных ур-ний. На основании матем. моделей биосистем можно, используя методы автоматического управления теории, успешно решать задачи дифф. диагностики и оптимизации лечения. Область моделирования детерминированных биосистем развита наиболее полно.
Если организованность биосистем по отношению к изучаемому показателю (или системе показателей) лежит в пределах 0,3 — 0,1, то системы можно считать вероятностно-детерминированными. К ним относятся системы управления внутр. органами с явно выраженной компонентой нервной регуляции (напр., система управления частотой пульса), а также системы гормональной регуляции в случае патологии. В качестве адекватного матем. аппарата может служить представление динамики изменения показателей дифф. ур-ниями с коэфф., подчиняющимися определенным законам распределения. Моделирование таких биосистем развито сравнительно слабо, хотя и представляет значительный интерес для целей кибернетики медицинской.
Вероятностные биосистемы характеризуются значением организованности R в пределах от 0,1 до 0. К ним относятся системы, определяющие взаимодействие анализаторов и поведенческие реакции, включая процессы обучения при простых условно-рефлекторных актах и сложных взаимосвязях между сигналами окружающей среды и реакциями организма. Адекватным матем. аппаратом
для моделирования таких биосистем является теория детерминированных и случайных автоматов, взаимодействующих с детерминированными и случайными средами, случайных процессов теория.
Матем. моделирование биосистем включает предварительную статистическую обработку экспериментальных результатов (см. Биологических исследований математические методы), изучение сложности и организованности биосистем, выбор адекватной матем. модели и определение числовых значений параметров матем. модели по экспериментальным данным (см. Кибернетика биологическая). Последняя задача в общем случае является очень сложной. Для детерминированных биосистем, модели которых могут быть представлены линейными дифф. ур-ниями, определение наилучших параметров модели (коэфф. дифф. ур-ния) может быть проведено методом спуска (см. Градиентный метод) в пространстве параметров модели, оценивая по интегралу от квадрата ошибки. В этом случае требуется применить процедуру спуска по параметрам для минимизации функционала
где Т — период, характерное время для показателя , у — экспериментальная кривая изменения показателя биосистемы, у — решение матем. модели. Если необходимо получить наилучшее (в смысле интеграла от квадрата ошибки) приближение матем. модели к работе биосистемы по нескольким показателям по различным внутренним состояниям биосистемы или для различных характерных внешних воздействий, то можно, применяя метод спуска в пространстве параметров модели, минимизировать сумму частных функционалов . При использовании такой процедуры выбора параметров матем. модели можно повысить вероятность получения единственного набора коэфф. модели, отвечающих принятой структуре. С помощью Б. с. м. м. желательно получить не только количественные характеристики работы биосистем, ее элементов и характеристики взаимосвязи элементов, но и выявить критерии работы баосистем, установить определенные общие принципы их функционирования. Лит.: Глушков В. М. Введение в кибернетику. К., 1964 [библиогр. с. 319—322]; Моделирование в биологии и медицине, в. 1—3. К., 1965-68; Буш Р., Мостеллер Ф. Стохастические модели обучаемости. Пер. с англ. М., 1962. Ю. Г. Антомонов.