АВТОМАТОВ ТЕОРИЯ
— раздел теоретической кибернетики, в котором изучаются математические модели (называемые автоматами, машинами) реально существующих (технических, биологических и т. п.) или принципиально возможных устройств, перерабатывающих дискретную информацию дискретными временными тактами. А. т. возникла гл. образом под влиянием запросов техники цифровых вычислительных и управляющих машин, а также внутренней потребности теории алгоритмов и математической логики. Понятие «автомата» заметно варьирует в зависимости от характера названных устройств, от принятого уровня абстракции и целесообразной степени общности (автоматы конечные, бесконечные, растущие, вероятностные, детерминированные, автономные и т. п.).
Вопрос же о выработке такого понятия «автомат», которое обладало бы макс. степенью общности и вместе с тем могло бы служить основой для постановки и решения достаточно содержательных задач, нельзя считать еще полностью решенным. Вместе с тем его можно рассматривать как частный случай общего понятия управляющей системы.
Термин «А. т.» вошел в обиход в 50-е годы 20 ст., хотя соответствующая проблематика в значительной мере начала складываться еще в 30-е годы в рамках теории алгоритмов и теории релейных устройств. Еще тогда в алгоритмов теории были сформулированы достаточно общие понятия вычисл. автомата (см. Тьюринга машина) и (неявно) понятие автомата конечного (головка машины Тьюринга). Было установлено, что для осуществления
всевозможных эффективных преобразований информации вовсе не обязательно строить каждый раз специализированные автоматы; в принципе все это можно сделать на одном универсальном автомате при помощи подходящей программы и подходящего кодирования. Этот теор. результат позже получил инженерное воплощение в виде современных универсальных вычисл. машин. Однако развернутое изучение процессов, протекающих в автоматах различного рода, и общих закономерностей, которым они подчинены, началось позднее лишь в рамках А. т. Различие в постановках между задачами теории алгоритмов и А. т. можно кратко охарактеризовать как различие между вопросами о том, что могут делать автоматы и как они это делают. Поскольку привлечение др. типов автоматов (отличных от машин Тьюринга) заведомо не расширяет запаса вычислимых преобразований информации, то для теории алгоритмов такое привлечение носит лишь эпизодический характер и связано только с применяемой техникой доказательств. С другой стороны, для А. т. такое рассмотрение становится уже самоцелью. Теор. и прикладные задачи автоматики, вычисл. техники и программирования, моделирования биол. поведения и др. продолжают стимулировать проблематику А. т. Однако наряду с этим, А. т. уже вырабатывает собственную внутреннюю проблематику. В А. т. широко применяется аппарат алгебры, логики математической, комбинаторного анализа (включая графов теорию) и вероятностей теории.
В А. т. достаточно четко вырисовываются отдельные ее направления, обусловленные выбором изучаемых типов автоматов (конечных, вероятностных и т. п.), принятым уровнем абстракции (см. Абстрактная теория автоматов, Структурная теория автоматов) или спецификой применяемых матем. методов (см. Алгебраическая теория автоматов). Наряду с этим родственные задачи и методы интенсивно развиваются в теории релейных устройств, в теории ЦВМ ив теории программирования, поэтому зачастую трудно бывает различать сферы действия этих теорий и А. т.
Поведение и структура. В основе А. т. лежат точные матем. понятия, формализующие интуитивные представления о функционировании и поведении автомата, а также о его структуре (внутреннем устройстве). С точки зрения их поведения, автоматы чаще всего рассматриваются как преобразователи словарной информации, т. е. преобразователи последовательностей букв в последовательности букв. Реализуемое преобразование интерпретируется обычно как вычисление значений некоторой ф-ции (оператора) по заданным значениям аргументов или как преобразование записей условий задач некоторого типа в записи соответствующих решений. В частности, т. н. распознающие автоматы, воспринимая входную информацию, реагируют на нее так, что некоторые входные последовательности сигналов они принимают, а другие — отвергают. В этом смысле они распознают или, как говорят еще, представляют мн-ва входных последовательностей. Наконец, порождающий автомат функционирует как автономная система, не связанная со входной информацией, его поведение определяется тем, какие выходные последовательности он способен порождать. Приведенная классификация в терминах преобразования, распознавания и порождения зависит от правил функционирования автомата, т. е. от программы взаимодействия его внутренних состояний со входными (поступающими из внешней среды) и выходными (вырабатываемыми во внешнюю среду) сигналами. Пусть Q, X, Y — соответственно мн-ва внутренних состояний входных и выходных сигналов автомата. Если это детерминированный автомат, его программа формализуется в терминах ф-ции переходов Ч и ф-ции выходов Ф, указывающих для каждого входного сигнала х и каждого состояния состояние в которое переходит автомат, и вырабатываемый им при этом выходной сигнал
Абстрактная А. т. характеризуется более высоким уровнем абстракции: в ней понятие автомата отождествляется с понятием программы автомата, т. е. с пятеркой (), при полном отвлечении от его структуры. Структура автомата отражает способ его организации из более простых взаимодействующих компонент (элементарных автоматов или просто - элементов), надлежащим образом соединенных в единую систему. Напр., вычисл. машина составлена из элементарных ячеек типа триггеров, инверторов и т. п.; нервная система построена из нейронов. Структурная классификация автоматов определяется характером допускаемых соединений (соединения могут быть жесткими или же изменяться в процессе работы, подвергнуты тем или иным геом. ограничениям), а также спецификой функционирования и взаимодействия употребляемых элементов (напр., элементы могут только обмениваться информацией или же они могут порождать новые элементы, наращивая структуру). Формализация структурных понятий осуществляется в терминах различного рода схем (см. Сеть логическая). А. Н. Колмогоров наметил подход, приведший к формулировке весьма общего, но все еще конструктивного понятия структуры автомата (см. Автоматы растущие), которое, по-видимому, охватывает все известные типы структур автоматов и все те, которые можно предвидеть на современном уровне науки. Вполне очевидно, что имеется тесная связь между структурой автомата и его поведением. Однако раздельное изучение каждого из этих двух аспектов при значительном отвлечении от другого не только возможно, но зачастую и полезно при постановке и решении многих важных проблем. Такое изучение производится соответственно в абстрактной (поведенческой) и структурной теории автоматов.
Типы автоматов. Наиболее распространенной является классификация автоматов и со-отв. разделов А. т., посвященных различным
типам автоматов, по следующим признакам.
1) Объем памяти. Конечные и бесконечные автоматы характеризуются соотв. конечностью и бесконечностью объема памяти (числа внутренних состояний). Конечными автоматами являются отдельные блоки современных вычисл. машин и даже машина в целом. Мозг также можно рассматривать как конечный автомат. Бесконечные автоматы представляют собой естественную матем. идеализацию, вырастающую из представления об автомате с конечным, но необозримо большим числом состояний. При этом имеется в виду лишь потенциальная бесконечность памяти, проявляющаяся в том, что память, хотя и остается конечной в каждый момент времени, может неограниченно возрастать. Такая идеализация возникла впервые в рамках теории алгоритмов в процессе уточнения интуитивного представления об алгоритме. Структурно-растущий автомат представляют в виде соединения элементов, способных к размножению и наращиванию схемы. Современные ЭВМ можно рассматривать как растущие (а вместе с тем и потенциально бесконечные) автоматы в следующем смысле: чтобы вычисления во всех случаях могли быть доведены до конца, приходится допускать возможность неограниченного наращивания внешней (ленточной) памяти.
2) Механизм случайного выбора. В детерминированных автоматах поведение и структура в каждый момент времени однозначно определены текущей входной информацией и состоянием автомата, сложившимся в непосредственно предшествующий момент. В вероятностных (стохастических) автоматах они зависят еще и от некоторого случайного выбора. Стохастические автоматы не следует смешивать с недетерминированными, в которых так же нарушено условие однозначности (однако без участия к.-л. механизма случайного выбора).
Проблемы и методы. К центр, проблемам А. т. относятся проблемы анализа, т. е. описания поведения автомата, исходя из заданной его программы или структуры, и синтеза — т. е. конструирования автоматов, поведение которых удовлетворяло бы заранее предъявляемым требованиям. С этими проблемами тесно связаны и многие др. задачи, которые интенсивно исследуются (полнота и универсальность, минимизация, языки, асимптотические оценки и др.). Более всего анализ и синтез исследованы в теории конечных детерминированных автоматов, причем они по-разному трактуются в абстрактной и в структурной теориях автоматов. Так, напр., в структурной теории под синтезом (см. Синтез автоматов структурный) подразумевается построение схемы из заданного ассортимента элементов, которая была бы оптим. (или близка к оптим.) в смысле некоторого выдвигаемого критерия сложности схем. Здесь преобладают комбинаторно-информационные методы и асимптотические оценки (К. Шэннон, С. В. Яблонский, О. Б. Лупанов и др.). В абстрактной теории автоматов довольствуются построением программы функционирования автомата (см. Синтез автоматов абстрактный), напр., в виде ф-ций перехода и выхода для конечного автомата, которая обычно служит исходным материалом для дальнейшего развертывания структурного синтеза. Здесь используются преимущественно алгебраические (С. К. Клини, В. М. Глушков и др.), математико-логич. (Б. А. Трахтенброт, Р. Бюхи и др.) и игровые (Р. Мак-Нотоп) методы и понятия. Проблема анализа и синтеза конечных детерминированных автоматов занимает видное место и в теории релейных устройств.
В теории экспериментов с автоматами (Э. Мур) разрабатываются методы, которые позволяют по сведениям, получаемым при внешнем наблюдении за поведением автомата, восстанавливать программу его функционирования или по крайней мере некоторые ее свойства. Эти методы можно рассматривать как своеобразный прием абстрактного синтеза и расшифровки автоматов (Я. М. Барздинь). Работы К. Шэннона, М. Рабина и др. послужили толчком к развитию теории вероятностных автоматов в следующих направлениях: 1) в какой мере понятия и методы теории детерминированных автоматов переносятся на стохастические автоматы; 2) какие упрощения вычисл. процесса достижимы при выходе из более узкого класса детерминированных автоматов в более широкий класс автоматов вероятностных. Изучение растущих автоматов сосредоточено в основном на следующих проблемах: 1) разработка моделей растущих автоматов и изучение отдельных их классов (автоматы итеративные — Ф. Хенни, автоматы регистровые — В. М. Глушков, автоматы самовоспроизводящиеся — Дж. фон Нейман, обобщенные растущие автоматы — А. Н. Колмогоров, Я. М. Барздинь); 2) оценка вычисл. способности и сложности вычислений растущих автоматов (Я. М. Барздинь, Б. А. Трахтенброт, Ю. Хартманис, Г. С. Цейтин, М. Рабин и др.).
Связь с другими научными направлениями.
Значение теории алгоритмов и теории релейных устройств для А. т. уже было разъяснено выше. Следует указать и на обратную отдачу А. т., методы которой позволили решить ряд задач, возникших в матем. логике и теории алгоритмов (Р. Бюхи). Проблематика, складывающаяся в теории растущих автоматов (напр., сложность вычислений), лежит по существу на стыке теории алгоритмов и асимптотических закономерностей структурного синтеза автоматов. Сильное взаимное проникновение А. т. и лингвистики математической, одним из важных понятий которой является грамматика порождающая, — объект весьма близкий к порождающему автомату. Поэтому отдельные довольно важные положения теории грамматик могут быть в принципе отнесены к А. т. В абстрактной теории автоматов матем. вопросы обучения, а также целесообразного поведения одного индивидуума или коллектива были уточнены и исследованы в терминах автоматов игр (М. Л. Цетлин). Полезной
оказалась также связь теории конечных автоматов с теорией проектирования ЦВМ и теорией программирования (В. М. Глушков, А. А. Летичевский).
Лит.: Гаврилов М А. Теория релейно-контактных схем. М.- Л., 1950 [библиогр. с. 298—299]; «Труды математического института им. В. А. Стеклова АН СССР», 1958, т. 51; Глушков В. М. Синтез цифровых автоматов. М., 1962 [библиогр. с. 464— 469]; Кобр инский Н. Е., Трахтенброт Б. А. Введение в теорию конечных автоматов. М., 1962 [библиогр. с. 399—402]; Цетлин М. Л. Исследования по теории автоматов и моделированию биологических систем. М., 1969 [библиогр. с. 306—316]; Трахтенброт Б. А., Барздинь Я. М. Конечные автоматы (Поведение и синтез). М., 1970 [библиогр. с. 389—395]; Автоматы. Пер. с англ. М., 1956. Б. А, Трахтенброт.