Главная > Энциклопедия кибернетики. Т.1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ИНТЕГРАЛЬНАЯ СХЁМА

— функциональный узел электронной аппаратуры, все микроминиатюрные компоненты и соединительные проводники которого изготовлены в объеме или на поверхности общей подложки с применением групповых операций в едином технологическом цикле и герметизированы в одном корпусе как единое целое. Первые И. с. появились в конце 50-х годов как результат поисков, направленных на повышение надежности, быстродействия, снижение стоимости и миниатюризацию усложняющихся электронных систем. По принципам построения и особенностям технологии различают И. с. на активной и на пассивной подложке. К первому классу относятся т. н. полупроводниковые (твердотельные, твердые) И. с., которые изготовляют на монокристаллах полупроводника (обычно кремния) методами планарной технологии. В процессе изготовления в объеме кристалла образуют специально легированные микрообласти и структуры, выполняющие роль транзисторов, диодов, резисторов, конденсаторов, линий задержки и т. п., необходимые для получения требуемой функциональной схемы. Все они имеют выход на поверхность кристалла, на которой поверх окиспого слоя создают контактные площадки и внутрисхемные соединения в виде пленочных металлизированных дорожек. Полупроводниковые И. с. по способу электр. изоляции компонентов делятся на И. с. с изоляцией и -переходом, смещенным в обратном направлении, и И. с. с диэлектр. изоляцией. Отдельный класс полупроводниковых И. с. составляют схемы с транзисторными структурами металл — диэлектрикполупроводник (МДП-транзисторами). Характеристики таких И. с. приведены в табл.

К И. с. на активной подложке относят также т. н. совмещенные И. с., отличающиеся от полупроводниковых тем, что на поверхноств полупроводника поверх окисного слоя выполняют в виде пленок не только контактные

площадки и соединительные проводники, но и большинство пассивных компонентов.

Из И. с. на пассивной подложке наиболее широко распространены т. н. гибридно-пленочные И. с., которые изготовляют на диэлектрической подложке, причем пассивную часть схемы формируют из пленочных компонентов, а активную — внутри миниатюрных полупроводниковых кристаллов с балочными или шариковыми выводами, монтируемыми на пленочной схеме в виде навесных деталей. В зависимости от толщины рабочих слоев гибриднопленочные И. с. подразделяют на тонко- и толстопленочные.

Для изготовления тонкопленочных компонентов используют такие процессы, как напыление в вакууме (термическое или с помощью ионной бомбардировки), хим. и электрохим. осаждение и выращивание, реактивное распыление. При изготовлении толстопленочных компонентов применяют шелкографию, центрифугирование и пр. Для придания пленочным компонентам нужной конфигурации используют маскирование и фотолитографию.

Гибридно-пленочные И. с. позволяют полностью использовать преимущества пассивных тонкопленочных и активных твердотельных элементов. Все технологические операции изготовления И. с. являются групповыми, т. е. в процессе их выполнения одновременно формируют целые массивы микроэлектронных компонентов и схем и соединения между ними. Это позволяет создавать высоконадежные и в то же время дешевые И. с. и выпускать их в большом к-ве. Надежность И. с. в 1965 характеризовалась интенсивностью отказов , а позже повысилась на порядок и стала равна надежности лучших образцов дискретных кремниевых транзисторов.

По функциональному назначению И. с. подразделяют на цифровые (логические) и линейные. Цифровые И. с. предназначены для применения в логич. и запоминающих узлах ЦВМ, а линейные — для усиления, преобразования игенерирования радио- и видеосигналов, токов и напряжений. Промышленностью выпускаются различные серии цифровых И. с., выполняющих функции инвертора, триггера, схем «НЕ — И» «НЕ — ИЛИ» и т. п. По особенностям схемного решения различают диодно-транзисторные (ДТЛ), транзистор-транзисторные (ТТЛ) логич. И. с., транзисторные схемы с непосредственными связями, с резистивными и резистивно-емкостными, с эмиттерными связями и т. д. От схемного и конструктивного решений, а также от уровня развития технологии зависят осн. характеристики цифровых И. с.: задержка распространения сигнала, потребляемая мощность, нагрузочная способность или коэфф. разветвления, помехоустойчивость и др. Напр., для диодно-транзисторной логич. схемы задержка распространения сигнала - 8 ч - 50 нсек, потребляемая мощность нагрузочная способность помехоустойчивость .

Из линейных И. с. наиболее широкое распространение получили операционные дифференциальные усилители постоянного тока, стандартные низкочастотные и высокочастотные усилители, усилители считывания для ЗУ и др. По числу компонентов и сложности выполняемых ф-ций различают И. с. с низкой (10 -4- 20 компонентов), средней (~ 50 — 100 комп.) и высокой (свыше 100 комп.) степенью интеграции. И. с., содержащие тысячи компонентов и выполняющие ф-ции целых узлов электронной аппаратуры, наз. большими И. с. (БИС). Повышение степени интеграции, переход к БИС’ам, улучшение надежности, снижение стоимости, совершенствование и автоматизация технологических процессов являются осн. тенденциями развития техники И. с. Лит.: Наумов Ю.Е. Интегральные логические схемы. М., 1970 [библиогр. с. 424—429]; Валиев К. А., Кармазинский А. Н., Королев М. А. Цифровые интегральные схемы на МДП-транзисторах. М., 1971. В. М. Корсунский.

1
Оглавление
email@scask.ru