§ 8.16. Свойства корней характеристического уравнения.
Число корней характеристического уравнения равно степени этого уравнения. Если характеристическое уравнение представляет собой уравнение первой степени, то оно имеет один корень, если второй степени — два корня и т. д. Уравнение первой степени имеет всегда отрицательный действительный (не мнимый и не комплексный) корень.
Уравнение второй степени может иметь: а) два действительных неравных отрицательных корня; б) два действительных равных отрицательных корня; в) два комплексно-сопряженных корня с отрицательной действительной частью.
Уравнение третьей степени может иметь: а)три действительных неравных отрицательных корня; б) три действительных отрицательных корня, из которых два равны друг другу; в) три действительных равных отрицательных корня; г) один действительный отрицательный корень и два комплексно-сопряженных с отрицательной действительной частью.