Главная > Теоретические основы электротехники
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 2.22. Метод узловых потенциалов.

Ток в любой ветви схемы можно найти по закону Ома для участка цепи, содержащего ЭДС. Для того чтобы можно было применить закон Ома, необходимо знать потенциалы узлов схемы. Метод расчета электрических цепей, в котором за неизвестные принимают потенциалы узлов схемы, называют методом узловых потенциалов.

Допустим, что в схеме узлов. Так как любая (одна) точка схемы может быть заземлена без изменения токораспределения в ней, один из узлов схемы можно мысленно заземлить, т. е. принять потенциал его равным нулю. При этом число неизвестных уменьшается с до

Число неизвестных в методе узловых потенциалов равно числу уравнений, которые необходимо составить для схемы по первому закону Кирхгофа. В том случае, когда число узлов без единицы меньше числа независимых контуров в схеме, данный метод является более экономным, чем метод контурных токов.

Обратимся к схеме рис. 2.24, которая имеет довольно большое число ветвей (И) и сравнительно небольшое число узлов (4). Если узел 4 мысленно заземлить, т. е. принять то необходимо определить потенциалы только трех узлов: Для единообразия в обозначениях условимся в § 2.22 токи писать с двумя индексами: первый индекс соответствует номеру узла, от которого ток утекает, второй индекс — номеру узла, к которому ток подтекает. Проводимости ветвей также будут снабжаться двумя индексами.

Рис. 2.24

Необходимо заметить, что эти проводимости не имеют ничего общего с входными и взаимными проводимостями ветвей, которые рассматривались в § 2.15.

В соответствии с обозначениями токов на рис. 2.24 составим уравнение по первому закону Кирхгофа для первого узла:

или

Перепишем последнее уравнение следующим образом:

где

Подобные же уравнения могут быть записаны и для остальных узлов схемы. Если схема имеет узлов, то ей соответствует система из уравнений:

В общем случае — сумма проводимостей ветвей, сходящихся в узле — сумма проводимостей ветвей, непосредственно соединяющих узлы взятая со знаком минус. Если между какими-либо двумя узлами ветвь отсутствует, то соответствующая проводимость равна нулю. В формировании узлового тока -узла участвуют те ветви, подходящие к этому узлу, которые содержат источники ЭДС и (или) тока. Если ЭДС -ветви направлены к -узлу, то ее вклад в формирование равен , а если эта ЭДС направлена от -узла, то ее вклад составляет — . Если к -узлу подтекает ток от источника тока, то он должен быть введен в со знаком плюс, если этот ток от источника тока утекает, то он должен входить в со знаком минус. После решения системы (2.22) относительно потенциалов определяют токи в ветвях по закону Ома для участка цепи, содержащего ЭДС.

В том случае, когда в схеме имеются два узла, соединенных ветвью, в которой имеется ЭДС, а сопротивление ее равно нулю, перед составлением системы уравнений по методу узловых потенциалов один из этих узлов рекомендуется устранить в соответствии с приемом, рассмотренным в §2.24.

Система уравнений (2.22) может быть представлена в матричной форме записи:

(2.22а)

Ее решение

(2.22б)

Еще Максвеллом было установлено, что распределение токов в электрических цепях всегда происходит так, что тепловая функция системы

минимальна. Коэффициент 1/2 обусловлен тем, что при двойном суммировании мощность каждой ветви учитывается дважды. Доказательство основано на том, что совокупность уравнений (2.22) является совокупностью условий минимума функции Р, т. е. совокупностью условии — и т. д.

Так как вторые производные положительны, то это и является доказательством минимума тепловой функции Р.

Пример 23. Найти токи в ветвях схемы рис. 2.24 и сделать проверку по второму закону Кирхгофа. Дано: . Источник тока, включенный между узлами 3 и 2, дает ток .

Решение. Записываем систему уравнений:

Подсчитываем проводимости:

При подсчете учтено, что проводимость ветви с источником тока равна нулю (сопротивление источника тока равно бесконечности).

Узловые токи:

Система уравнений

имеет решение .

Заключительный этап расчета состоит в подсчете токов по закону Ома. Перед определением токов в ветвях схемы следует эти токи обозначить и выбрать для них положительные направления:

Сделаем проверку решения по второму закону Кирхгофа для периферийного контура.

Алгебраическая сумма падений напряжений .

Алгебраическая сумма ЭДС .

Покажем, что основная формула (2.20) метода двух узлов получается как частный случай (2.22). Действительно, если один узел схемы (рис. 2.23), например узел 6, заземлить, то остается найти только один потенциал Для получения формулы (2.20) из (2.22) следует положить

1
Оглавление
email@scask.ru