Главная > Теоретические основы электротехники
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 2.13. Метод контурных токов.

При расчете методом контурных токов полагают, что в каждом независимом контуре схемы течет свой контурный ток. Уравнения составляют относительно контурных токов, после чего через них определяют токи ветвей.

Таким образом, метод контурных токов можно определить как метод расчета, в котором за искомые принимают контурные токи. Число неизвестных в этом методе равно числу уравнений, которые необходимо было бы составить для схемы по второму закону Кирхгофа.

Следовательно, метод контурных токов более экономен при вычислительной работе, чем метод на основе законов Кирхгофа (в нем меньше число уравнений).

Вывод основных расчетных уравнений приведем применительно к схеме рис. 2.12, в которой два независимых контура. Положим, что в левом контуре по часовой стрелке течет контурный ток а в правой (также по часовой стрелке) — контурный ток Для каждого контура составим уравнения по второму закону Кирхгофа. При этом учтем, что по смежной ветви (с сопротивлением ) течет сверху вниз ток — Направления обхода контуров примем также по часовой стрелке.

Для первого контура

или

Для второго контура

или

В уравнении (б) множитель при токе являющийся суммой сопротивлений первого контура, обозначим через множитель при токе (сопротивление смежной ветви, взятое со знаком минус) — через

Перепишем эти уравнения следующим образом:

Здесь

где — полное или собственное сопротивление первого контура; — сопротивление смежной ветви между первым и вторым контурами, взятое со знаком минус; — контурная ЭДС первого контура, равная алгебраической сумме ЭДС этого контура (в нее со знаком плюс входят те ЭДС, направления которых совпадают с направлением обхода контура); полное или собственное сопротивление второго контура; — сопротивление смежной ветви между первым и вторым контурами, взятое со знаком минус; — контурная ЭДС второго контура.

В общем случае можно сказать, что сопротивление смежной ветви между и -контурами входит в уравнение со знаком минус, если направления контурных токов вдоль этой ветви встречны, и со знаком плюс, если направления этих токов согласны.

Если в схеме больше двух контуров, например три, то система уравнений выглядит следующим образом:

или в матричной форме

Рекомендуется для единообразия в знаках сопротивлений с разными индексами все контурные токи направлять в одну и ту же сторону, например по часовой стрелке.

В результате решения системы уравнений какой-либо один или несколько контурных токов могут оказаться отрицательными.

В ветвях, не являющихся смежными между соседними контурами (например, в ветви с сопротивлениями схемы рис. 2.12), найденный контурный ток является действительным током ветви. В смежных ветвях через контурные токи определяют токи ветвей. Например, в ветви с сопротивлением протекающий сверху вниз ток равен разности —

Если в электрической цепи имеется независимых контуров, то число уравнений тоже равно .

Общее решение системы уравнений относительно тока

где

определитель системы.

Алгебраическое дополнение получено из определителя Д путем вычеркивания столбца и строки и умножения полученного определителя на

Если из левого верхнего угла определителя провести диагональ в его правый нижний угол (главная диагональ) и учесть, что то можно убедиться в том, что определитель делится на две части, являющиеся зеркальным отображением одна другой. Это свойство определителя называют симметрией относительно главной диагонали. В силу симметрии определителя относительно главной диагонали

Пример 13. Найти токи в схеме (рис. 2.13) методом контурных токов. Числовые значения сопротивлений в омах и ЭДС в вольтах указаны на рисунке.

Решение. Выберем направления всех контурных токов по часовой стрелке. Определяем: .

Рис. 2.13

Записываем систему уравнений:

Определитель системы

Подсчитаем контурные токи

Ток в ветви .

Ток в ветви .

Формула (2.5) в ряде параграфов используется в качестве исходной при рассмотрении таких важных вопросов теории линейных электрических цепей, как определение входных и взаимных проводимостей ветвей, принцип взаимности, метод наложения и линейные соотношения в электрических цепях.

Составлению уравнений по методу контурных токов для схем с источниками тока присущи некоторые особенности. В этом случае полагаем, что каждая ветвь с источником тока входит в контур, замыкающийся через ветви с источниками ЭДС и сопротивлениями, и что токи в этих контурах известны и равны токам соответствующих источников тока. Уравнения составляют лишь для контуров с неизвестными контурными токами. Если для схемы рис. 2.14, а принять, что контурный ток течет согласно направлению часовой стрелки по первой и второй ветвям, а контурный ток замыкается также по часовой стрелке по второй и третьей ветвям, то, согласно методу контурных токов, получим только одно уравнение с неизвестным током

Рис. 2.14

Отсюда и ток второй ветви .

1
Оглавление
email@scask.ru