Главная > Сопротивление материалов (Биргер И.А.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Температурные напряжения.

В пределах упругости материала напряжения от внешних сил и нагрева можно находить независимо. Рассмотрим определение температурных напряжений в стержне, считая, что внешние нагрузки отсутствуют. Внося равенства (14) — (16) в соотношение (15), получим формулу для температурных напряжений

Покажем, что в равномерно нагретом стержне, когда

(23)

температурные напряжения отсутствуют. Подставляя значение из (23), находим отвм так как оси у проходят через приведенный центр тяжести. Результат справедлив при статически определимых условиях закрепления, когда температурные деформации стержня не стеснены (например, один из торцов стержня свободен от закрепления).

Если нагрев (однородного стержня) осуществляется до температур, при которых изменением модуля упругости можно пренебречь (Е = const), то из соотношения (22) получаем более простую зависимость:

Рассмотрим в качестве примера определение температурных напряжений в стержне прямоугольного сечения (рис. 8.8, а), основание которого высота . Температура изменяется по степенному закону (рис. 8.8, б):

причем показатель степени является четным и температура имеет симметричное распределение; по координате у температура не изменяется.

Рис. 8.8. Определение температурных напряжений в стержне: а — неравномерный нагрев стержня; б — распределение температур и температурных напряжений

Предполагается для простоты, что влиянием нагрева на величину модуля упругости можно пренебречь.

Отметим, что

как статические моменты площади сечения с симметрично распределенным «весом»; это вытекает из физических предпосылок, так как принятое распределение температур не вызывает изгиба стержня, сечение стержня как жесткое тело может получить только поступательное движение, оставаясь параллельным своему положению до нагрева. Наконец, равенство (26) доказывается строго с помощью интегрирования по площади сечения. Далее находим

Из формулы (24) вытекает

Распределение температурных напряжений по координате х показано на рис. 8.8, б.

В более нагретых частях стержня возникают сжимающие температурные напряжения. Физически это объясняется тем, что крайние волокна стержня получают большую температурную деформацию и при отсутствии поперечных связей стержня деформируются так, как показано на рис. 8.9, а.

Рис. 8.9. Картина температурных деформаций в стержне: а — поперечные связи отсутствуют; 6 — в конце стержня имеется жесткая пластинка

Поперечные связи удерживают крайние волокна (рис. 8.9, б), создавая в них напряжения сжатия, а в менее нагретых частях стержня — растяжения.

Замечания. 1. При выводе формулы для температурных напряжений (22) или (24) предполагалась справедливость гипотезы плоских сечений. При определении температурных напряжений она нарушается вблизи свободного торца стержня.

Действительно, по равенству (22) температурные напряжения одинаковы по всей длине стержня, вместе с тем свободный торец стержня свободен от каких-либо напряжений. Если же на торце стержня имеется жесткая пластинка, то температурные напряжения будут во всем стержне одинаковыми по длине и строго соответствовать формуле (22). При свободном торце в концевой области должны возникнуть касательные напряжения (поперечные связи), которые на некотором удалении от свободного торца (порядка размера сечения) сделают все-таки поперечные сечения плоскими и, следовательно, формулы (22) и (24) справедливыми.

2. Напряжения от неравномерного нагрева (температурные напряжения) в статически определимом стержне (ил? свободном от закрепления) всегда самоуравновешены. Это означает, что

В сущности, эти условия были использованы при выводе уравнений (6) — (8); уравнения (22) и (24) удовлетворяют этим условиям при любом распределении температуры.

Свойством самоуравновешенности обладают и остаточные напряжения, существующие в элементах конструкции после их изготовления. Температурные и остаточные напряжения имеют, в сущности, одну причину возникновения — неравномерные первоначальные деформации (в результате нагрева или в процессе изготовления).

1
Оглавление
email@scask.ru