Главная > Элементарная математика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

251. Площадь поверхности цилиндра.

Рассмотрим цилиндр вращения радиуса R и высоты h (рис. 383). В основание этого цилиндра впишем правильный многоугольник (на рис. 383 — шестиугольник) и с его помощью построим правильную призму, вписанную в цилиндр. Таким же путем можно описывать вокруг цилиндра правильные призмы с произвольно большим числом боковых граней.

За площадь боковой поверхности цилиндра принимается по определению предел, к которому стремятся площади боковых поверхностей вписанных и описанных вокруг него правильных призм по мере неограниченного удвоения (или вообще увеличения) числа их боковых граней.

Рис. 384.

Рис. 385.

То, что такой предел существует, мы сейчас и докажем. Если возьмем вписанную правильную призму, построенную на правильном -угольнике, как на основании, то для ее боковой поверхности будем иметь выражение , где — периметр правильного -угольника, вписанного в круг основания цилиндра. При . Точно такое же вычисление для описанной призмы дает тот же самый результат. Итак, площадь боковой поверхности цилиндра вращения выражается формулой

Боковая поверхность цилиндра равна произведению длины образующей на периметр (т. е. длину окружности) основания.

Задача 1. Отрезок, соединяющий диаметрально противоположные точки А и В верхнего и нижно оснований цилиндра (рис. 384), равен 10 см и наклонен к плоскости основания под углом в 60°. Найти площадь боковой поверхности цилиндра.

Решение. Проведем через отрезок Л Всечение плоскостью, перпендикулярной к основанию цилиндра. Из треугольника имеем

откуда находим для боковой поверхности цилиндра

Задача 2. Треугольник ABC, вершины А и В которого суть концы диаметра нижнего основания цилиндра, а вершина С—конец перпендикулярного к нему диаметра верхнего основания, равносторонний со стороной а,

Найти площади боковой и полной поверхностей цилиндра. Решение. Радиус основания цилиндра равен Высота треугольника ABC (рис. 385) равна а образующая цилиндра вычисляется как

Отсюда боковая поверхность цилиндра получается равной

а полная поверхность (равная сумме площади боковой поверхности и площади двух оснований цилиндра) равна

Упражнения

1. Диагонали боковых граней прямоугольного параллелепипеда наклонены к плоскости основания под углами, соответственно равными . Найти угол наклона к той же плоскости диагонали параллелепипеда.

2. В прямом параллелепипеде острый угол основания равен а, а одна из сторон основания равна а. Сечение, проведенное через эту сторону и противоположное ребро верхнего основания, имеет площадь Q, и плоскость его наклонена к плоскости основания под углом . Найти объем и полную поверхность параллелепипеда.

3. Основанием наклонной треугольной призмы служит равнобедренный прямоугольный треугольник, а проекция одного из боковых ребер на плоскость основания совпадает с медианой m одного из катетов треугольника. Найти угол наклона боковых ребер к плоскости основания, если объем призмы равен V.

4. В правильной шестиугольной призме через сторону основания проведены два сечения: 1) содержащее противоположную сторону верхнего основания, 2) содержащее центр верхнего основания. При какой высоте призмы угол между плоскостями сечений имеет наибольшую величину и чему он равен в этом случае?

1
Оглавление
email@scask.ru