60. Формулы Виета. Разложение квадратного трехчлена на множители.
Найдем сумму и произведение корней квадратного уравнения. Используя формулы (59.8) для корней приведенного уравнения, получим
(первое равенство очевидно, второе получается после несложного вычисления, которое читатель проведет самостоятельно; удобно использовать формулу для произведения суммы двух чисел на их разность).
Доказана следующая
Теорема Виета. Сумма корней приведенного квадратного уравнения равна второму коэффициенту с противоположным знаком, а их произведение равно свободному члену.
В случае неприведенного квадратного уравнения следует в формулы (60.1) подставить выражения формулы (60.1) примут вид
Пример 1. Составить квадратное уравнение по его корням:
Решение, а) Находим уравнение имеет вид
Пример 2. Найти сумму квадратов корней уравнения не решая самого уравнения.
Решение. Известны сумма и произведение корней. Представим сумму квадратов корней в виде
и получим
Из формул Виета легко получить формулу
выражающую правило разложения квадратного трехчлена на множители.
В самом деле, напишем формулы (60.2) в виде
Теперь имеем
что и требовалось получить.
Вышеуказанный вывод формул Виета знаком читателю из курса алгебры средней школы. Можно дать другой вывод, использующий теорему Безу и разложение многочлена на множители (пп. 51, 52).
Пусть корни уравнения тогда по общему правилу (52.2) трехчлен в левой части уравнения разлагается на множители:
Раскрывая скобки в правой части этого тождественного равенства, получим
и сравнение коэффициентов при одинаковых степенях даст нам формулы Виета (60.1).
Преимущество этого вывода состоит в том, что его можно применить и к уравнениям высших степеней с тем, чтобы получить выражения коэффициентов уравнения через его корни (не находя самих корней!). Например, если корни приведенного кубического уравнения
суть то согласно равенству (52.2) находим
(в нашем случае Раскрыв скобки в правой части равенства и собрав коэффициенты при различных степенях получим
Приравнивая коэффициенты при одинаковых степенях в обеих частях равенства (60.5), находим
Пример 3. Ребра а, b, с прямоугольного параллелепипеда являются корнями кубического уравнения
Найти объем и полную поверхность параллелепипеда.
Решение. Объем прямоугольного параллелепипеда равен произведению трех его ребер: , и в силу формул Виета (60.6)
Полная поверхность равна , и по формулам (60.6) имеем