Главная > Элементарная математика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

67. Определители второго порядка. Исследование линейных систем двух уравнений с двумя неизвестными.

В теории систем линейных уравнений и в некоторых других вопросах удобно использовать понятие определителя, или детерминанта.

Рассмотрим какую-либо четверку чисел записанных в виде квадратной таблицы (матрицы) по два в строках и по два в столбцах. Определителем или детерминантом, составленным из чисел этой таблицы, называется число , обозначаемое так:

Такой определитель называется определителем второго порядка, поскольку для его составления взята таблица из двух строк и двух столбцов. Числа, из которых составлен определитель, называются его элементами, при этом говорят, что элементы составляют главную диагональ определителя, а элементы — его побочную диагональ. Видно, что определитель равен разности произведений пар элементов, стоящих на его главной и побочной диагоналях.

Пример 1. Вычислить следующие определители второго порядка:

Решение, а) По определению имеем

д) имеем

С помощью определителей можно равенства (66.6), (66.7) и (66.8) переписать, поменяв местами их части, так:

Заметим, что определители весьма просто составляются по коэффициентам системы (66.2).

Действительно, определитель составляется из коэффициентов при неизвестных в этой системе. Он называется главным определителем системы (66.2). Назовем определителями для неизвестных х и у соответственно. Можно сформулировать следующее правило их составления: определитель для каждой из неизвестных получается из главного определителя, если в нем столбец коэффициентов при этой неизвестной заменить столбцом свободных членов (взятых из правых частей уравнений системы).

Пример 2. Систему (66.12) решить с помощью определителей.

Решение. Составляем и вычисляем главный определитель данной системы:

Теперь в нем заменим столбец коэффициентов при х (первый столбец) свободными членами. Получим определитель для х:

Подобным же образом найдем

Отсюда по формулам (66.11) получаем

Мы пришли к уже известному нам решению (1, —1).

Проведем теперь исследование системы линейных уравнений (66.2). Для этого вернемся к равенствам (66.9) и (66.10) и будем различать два случая:

Пусть Тогда, как уже отмечалось, формулы (66.11) дают единственное решение системы (66.2). Итак, если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое формулами (66.11); такая система называется определенной.

2) Пусть теперь . В зависимости от значений будем различать два случая.

а) Хотя бы один из определителей отличен от нуля; тогда система (66.2) не имеет решений. Действительно, пусть, например, . Равенство (66.9) не может удовлетворяться ни при каком значении так как это равенство получено как следствие системы (66.2), то система не имеет решений. Такая система называется несовместной.

б) Оба определителя равны нулю; равенства (66.9) и (66.10) удовлетворяются тождественно и для исследования системы (66.2) использованы быть не могут.

Докажем, что если и хотя бы один из коэффициентов при неизвестных в системе (66.2) отличен от нуля, то система имеет бесконечнее множество решений. Чтобы убедиться в этом, допустим, например, что . Из соотношений

получим

и из записи второго уравнения системы (66.2), подставляя в него выражения коэффициентов

или

найдем, что оно отличается от первого уравнения лишь множителем т. е., по существу, совпадает с ним (равносильно ему). Система (66.2) сводится к одному лишь первому уравнению и определяет бесчисленное множество решений (такая система называется неопределенной). Возможен, в принципе, и такой крайний случай, как равенство нулю всех коэффициентов при неизвестных (он может встретиться при исследовании систем с буквенными коэффициентами). У такой системы

все определители равны нулю: однако, она является несовместной при или .

Подведем итоги исследования системы линейных уравнений (66.2). Имеется три вида таких систем:

1) Если , то система определенная, имеет единственное решение (66.11).

2) Если , но то система несовместна, решений не имеет.

3) Если хотя бы один из коэффициентов при неизвестных отличен от нуля), то система неопределенная, имеет бесконечное множество решений (сводится к одному уравнению).

Равенство нулю определителя,

означает пропорциональность элементов, стоящих в его строках (и обратно):

В силу этого признаки, отличающие линейные системы разных типов (определенные, неопределенные, несовместные), могут быть сформулированы в терминах пропорций между коэффициентами системы (без привлечения определителей).

Условие заменяется поэтому требованием пропорциональности (непропорциональности) коэффициентов при неизвестных:

В случае оказываются пропорциональными не только коэффициенты при неизвестных, но и свободные члены:

(эти пропорции получаются, например, из (67.6)). Если же, например, ДО, то из (66.6) видим, что — свободные члены не пропорциональны коэффициентам при неизвестных. Итак:

1) Если коэффициенты при неизвестных не пропорциональны:

то система определенная.

2) Если коэффициенты при неизвестных пропорциональны, а свободные члены им не пропорциональны:

то система несовместная.

3) Если пропорциональны коэффициенты при неизвестных и свободные члены:

то система неопределенная.

Проведенное исследование систем линейных уравнений с двумя неизвестными допускает простое геометрическое истолкование. Всякое линейное уравнение вида (38.4) определяет на координатной плоскости прямую линию. Уравнения системы (66.2) можно поэтому истолковать как уравнения двух прямых на плоскости, а задачу решения системы — как задачу об отыскании точки пересечения этих прямых.

Ясно, что возможны три случая: 1) данные две прямые пересекаются (рис. 61, а); этот случай отвечает определенной системе; 2) данные две прямые параллельны (рис. 61, б); этот случай соответствует несовместной системе;

Рис. 61

3) данные прямые совпадают (рис. 61, в); этот случай соответствует неопределенной системе: каждая точка «дважды заданной» прямой будет решением системы.

Пример 3. Исследовать линейные системы:

Решение, а) Составим и вычислим главный определитель данной системы:

Далее вычисляем :

Система не имеет решений; она несовместна.

Этот же вывод можно сделать не прибегая к определителям. Замечаем, что в данной системе коэффициенты при х и у пропорциональны, а свободные члены не находятся в том же отношении, что и коэффициенты при неизвестных:

б) Имеем

Далее,

Система имеет бесконечно много решений.

Можно прийти к этому выводу и без определителей, если заметить, что все коэффициенты системы пропорциональны; умножением на 5 первое уравнение приводится ко второму — система фактически состоит из одного уравнения.

Пример 4. Исследовать систему

Решение. Коэффициенты системы зависят от параметра а; исследовать систему — это значит указать, при каких значениях а система будет, соответственно, определенной, неопределенной, несовместной.

Начинаем с вычисления главного определителя:

Главный определитель отличен от нуля при всех значениях а, не равных 0 и 3. Следовательно, система будет определенной (т. е. иметь единственное решение) при .

Исследуем теперь особые значения а; пусть сначала система при этом принимает вид (мы подставляем в уравнения (67.7))

и оказывается несовместной.

Остается еще рассмотреть случай при система (67.7) принимает вид

и сводится, по существу, к одному уравнению. Система неопределенная, ей удовлетворяют все точки прямой Выразив отсюда у через запишем все множество решений в виде , где может принимать произвольное значение.

Формулируем ответ: при а=0 система несовместная, при неопределенная, при всех остальных значениях — определенная.

1
Оглавление
email@scask.ru