§ 2. Пирамида. Конус
252. Свойства пирамиды и конуса.
Рассмотрим какую-либо линию l (кривую или ломаную), лежащую в некоторой плоскости (рис. 386, а, б), и произвольную точку М, не лежащую в этой плоскости. Всевозможные прямые, соединяющие точку М со всеми точками линии образуют поверхность а; такая поверхность называется конической поверхностью, точка вершиной, линия - направляющей, прямые образующими. На рис. 386 мы не ограничиваем поверхность а ее вершиной, но представляем себе ее простирающейся неограниченно в обе стороны от вершины.
Если коническую поверхность рассечь какой-либо плоскостью, параллельной плоскости направляющей , то в сечении получим линию (кривую или ломаную, в зависимости от того, была ли кривой или ломаной линия ), гомотетичную линии l, с центром гомотетии в вершине конической поверхности. Действительно, отношение любых соответствующих отрезков образующих будет постоянным:
Рис. 386.
Итак, сечения коническои поверхности плоскостями, параллельными плоскости направляющей, подобны и подобно расположены, с центром подобия в вершине конической поверхности; это же верно для любых параллельных плоскостей, не проходящих через вершину поверхности.
Пусть теперь направляющая — замкнутая выпуклая линия (кривая на рис. 387, а, ломаная на рис. 387, б). Тело, ограниченное с боков конической поверхностью, взятой между ее вершиной и плоскостью направляющей, и плоским основанием в плоскости направляющей, называется конусом (если -кривая линия) или пирамидой (если -ломаная).
Пирамиды классифицируются по числу сторон многоугольника, лежащего в их основании. Говорят о треугольной, четырехугольной и вообще -угольной пирамидах. Заметим, что -угольная пирамида имеет грань: боковых граней и основание. При вершине пирамиды мы имеем -гранный угол с плоскими и двугранными углами.
Они соответственно называются плоскими углами при вершине и двугранными углами при боковых ребрах. При вершинах основания мы имеем трехгранных углов; их плоские углы, образованные боковыми, ребрами и сторонами основания, называются плоскими углами при основании, двугранные углы между боковыми гранями и плоскостью основания — двугранными углами при основании.
Рис. 387.
Треугольная пирамида иначе называется тетраэдром (т. е. четырехгранником). Любая из ее граней может быть принята за основание.
Рис. 388.
Пирамида называется правильной при выполнении двух условий: 1) в основании пирамиды лежит правильный многоугольник,
2) высота, опущенная из вершины пирамиды на основание, пересекает его в центре этого многоугольника (иначе говоря, вершина пирамиды проектируется в центр основания).
Заметим, что правильная пирамида не является, вообще говоря, правильным многогранником!
Отметим некоторые свойства правильной -угольной пирамиды. Проведем через вершину такой пирамиды высоту SO (рис. 388).
Повернем всю пирамиду как целое вокруг этой высоты на угол При таком повороте многоугольник основания перейдет сам в себя: каждая из его вершин займет положение соседней. Вершина пирамиды и ее высота (ось вращения!) останутся на месте, и поэтому пирамида как целое совместится сама с собой: каждое боковое ребро перейдет в соседнее, каждая боковая грань совместится с соседней, каждый двугранный угол при боковом ребре также совместится с соседним.
Отсюда вывод: все боковые ребра равны между собой, все боковые грани суть равные равнобедренные треугольники, все двугранные углы при основании равны, все плоские углы при вершине равны, все плоские углы при основании равны.
Из числа конусов в курсе элементарной геометрии мы изучаем прямой круговой конус, т. е. такой конус, основание которого круг, а вершина проектируется в центр этого круга.
Рис. 389.
Рис. 390.
Прямой круговой конус показан на рис. 389. Если проведем через вершину конуса высоту SO и повернем конус вокруг этой высоты на произвольный угол, то окружность основания будет скользить сама по себе; высота и вершина останутся на месте, поэтому при повороте на любой угол конус совместится сам с собой. Отсюда видно, в частности, что все образующие конуса равны между собой и одинаково наклонены к плоскости основания. Сечения конуса плоскостями, проходящими через его высоту, будут равнобедренными треугольниками, равными между собой. Весь конус получается от вращения прямоугольного треугольника SOA вокруг его катета (который становится высотой конуса). Поэтому прямой круговой конус является телом вращения и также называется конусом вращения. Если не оговорено противное, мы для краткости в дальнейшем говорим просто «конус», понимая под этим конус вращения.
Сечения конуса плоскостями, параллельными плоскости его основания, суть круги (хотя бы потому, что они гомотетичны кругу основания).
Задача. Двугранные углы при основании правильной треугольной пирамиды равны а. Найти двугранные углы при боковых ребрах.
Решение. Обозначим временно сторону основания пирамиды через а. Проведем сечение пирамиды плоскостью, содержащей ее высоту SO и медиану основания AM (рис. 390).
Так как основание пирамиды — равносторонний треугольник, а О — его центр тяжести, то имеем
Для определения двугранного угла при боковом ребре возьмем середины сторон ВЛ и ВС основания пирамиды и опустим из них перпендикуляры на боковое ребро SB. В треугольнике КЕМ (ясно, что оба перпендикуляра пересекут боковое ребро SB в одной точке угол и будет искомый. Итак, нужно решить треугольник КЕМ, в котором сторона КМ равна как средняя линия основания, а стороны ML и КЕ равны и служат высотами прямоугольных треугольников (например, ) с известными катетами
и гипотенузой
Из сравнения двух выражений площади такого треугольника
имеем
Теперь в равнобедренном треугольнике КЕМ находим синус половины искомого угла
откуда окончательно