25. Освобождение от иррациональности в знаменателе дроби.
При преобразовании дробного алгебраического выражения, в знаменателе которого записано иррациональное выражение, обычно стремятся представить дробь так, чтобы ее знаменатель был рациональным. Если A,B,C,D,... — некоторые алгебраические выражения, то можно указать правила, с помощью которых можно освободиться от знаков радикала в знаменателе выражений вида
Во всех этих случаях освобождение от иррациональности производится умножением числителя и знаменателя дроби на множитель, выбранный так, чтобы его произведение на знаменатель дроби было рациональным.
1) Для освобождения от иррациональности в знаменателе дроби вида
. В умножаем числитель и знаменатель на
Пример 1.
.
2) В случае дробей вида
. Умножаем числитель и знаменатель на иррациональный множитель
соответственно, т. е. на сопряженное иррациональное выражение.
Смысл последнего действия состоит в том, что в знаменателе произведение суммы на разность преобразуется в разность квадратов, которая уже будет рациональным выражением.
Пример 2. Освободиться от иррациональности в знаменателе выражения:
Решение, а) Умножаем числитель и знаменатель дроби на выражение
. Получаем (при условии, что
)
3) В случае выражений типа
знаменатель рассматривается как сумма (разность) и умножается на неполный квадрат разности (суммы), чтобы получить сумму (разность) кубов ((20.11), (20.12)). На тот же множитель умножается и числитель.
Пример 3. Освободиться от иррациональности в знаменателе выражений:
Решение, а) Рассматривая знаменатель данной дроби как сумму чисел
и 1, умножим числитель и знаменатель на неполный квадрат разности этих чисел:
или окончательно:
В некоторых случаях требуется выполнить преобразование противоположного характера: освободить дробь от иррациональности в числителе. Оно проводится совершенно аналогично.
Пример 4. Освободиться от иррациональности в числителе
дроби
.
Решение.
Упражнения
1. Упростить выражения:
а)
, рассмогоев два случая:
;
2. Найти значение выражения:
при
где
.
3. Освободить от иррациональности в знаменателе следующие выражения: