Главная > Элементарная математика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 4. Иррациональные, показательные и логарифмические уравнения

70. Иррациональные уравнения.

Иррациональными называются уравнения, содержащие неизвестную величину под знаком корня. Таковы, например, уравнения

Во многих случаях, применяя однократно или многократно возведение в степень обеих частей уравнения, удается свести иррациональное уравнение к алгебраическому уравнению той или иной степени (являющемуся следствием исходного уравнения). Так как при возведении уравнения в степень могут появиться посторонние решения, то, решив алгебраическое уравнение, к которому мы привели данное иррациональное уравнение, следует найденные корни проверить подстановкой в исходное уравнение и сохранить лишь те, которые ему удовлетворяют, а остальные — посторонние — отбросить.

При решении иррациональных уравнений мы ограничиваемся только их действительными корнями; все корни четной степени в записи уравнений понимаются в арифметическом смысле.

Рассмотрим некоторые типичные примеры иррациональных уравнений.

А. У равнения, содержащие неизвестную под знаком квадратного корня. Если данное уравнение содержит только один квадратный корень, под знаком которого имеется неизвестная то следует этот корень уединить, т. е. поместить в одной части уравнения, а все другие члены перенести в другую часть. После возведения в квадрат обеих частей уравнения мы уже освободимся от иррациональности и получим алгебраическое уравнение для

Пример 1. Решить уравнение .

Решение. Уединяем корень в левой части уравнения;

Возводим полученное равенство в квадрат:

Находим корни этого уравнения:

Проверка показывает, что лишь удовлетворяет исходному уравнению.

Если в уравнение входит два и более корня, содержащих х, то возведение в квадрат приходится повторять несколько раз.

Пример 2. Решить следующие уравнения:

Решение, а) Возводим обе части уравнения в квадрат:

Уединяем корень:

Полученное уравнение снова возводим в квадрат:

После преобразований получаем для следующее квадратное уравнение:

решаем его:

Подстановкой в исходное уравнение убеждаемся в том, что есть его корень, а является для него посторонним корнем.

б) Пример можно решить тем же методом, каким был решен пример а). Однако, воспользовавшись тем, что правая часть данного уравнения не содержит неизвестной величины, поступим иначе. Умножим уравнение на выражение, сопряженное с его левой частью; получим

Справа стоит произведение суммы на разность, т. е. разность квадратов. Отсюда

или

В левой части данного уравнения стояла сумма квадратных корней; в левой части полученного теперь уравнения стоит разность тех же корней. Запишем данное и полученное уравнения:

Взяв сумму этих уравнений, получаем

или

Возведем в квадрат последнее уравнение и после упрощений получим

Отсюда находим . Проверкой убеждаемся в том, что корнем данного уравнения служит только число . Пример 3. Решить уравнение

Здесь уже под знаком радикала мы имеем квадратные трехчлены.

Решение. Умножаем уравнение на выражение, сопряженное с его левой частью:

отсюда

Вычтем последнее уравнение из данного:

Отсюда

или

Возводим это уравнение в квадрат:

Отсюда

Из последнего уравнения находим . Проверкой убеждаемся, что корнем данного уравнения служит только число х = 1.

Б. У равнения, содержащие корни третьей степени. Системы иррациональных уравнений. Ограничимся отдельными примерами таких уравнений и систем.

Пример 4. Решить уравнение

Решение. Покажем два способа решения уравнения (70.1). Первый способ. Возведем обе части данного уравнения в куб (см. формулу (20.8)):

(здесь мы заменили сумму кубических корней числом 4, пользуясь уравнением ).

Итак, имеем

или

т. е., после упрощений,

откуда Оба корня удовлетворяют исходному уравнению.

Второй способ. Положим

Уравнение (70.1) запишется в виде . Кроме того, видно что . От уравнения (70.1) мы перешли к системе

Разделив первое уравнение системы почленно на второе, найдем

и уже легко решим систему вида

Ее решения: .

Из равенства находим при и :

Рассмотрим теперь примеры решения систем уравнений с двумя неизвестными, из которых по крайней мере одно уравнение иррациональное.

Пример 5. Решить систему уравнений

Решение. Обозначим . Это позволит первое уравнение системы записать в виде

откуда . Взяв , найдем

Теперь из второго уравнения системы находим Из корней этого неполного квадратного уравнения берем только (корень отбрасываем; почему?). Отсюда .

Если взять то получим (читатель проведет все необходимые для этого выкладки самостоятельно). Итак, данная система имеет следующие решения: .

Пример 6. Решить систему уравнений

Решение. Возведя в квадрат первое уравнение, получим

С помощью второго уравнения системы найдем

Последнее уравнение является квадратным относительно Уху. Из него находим только положительное значение откуда , и данную систему тем самым сводим к системе

Решив эту систему, найдем, что пара чисел (1, 1) служит единственным решением и ее, и исходной системы.

1
Оглавление
email@scask.ru