Главная > ВАРИАЦИОННЫЕ ПРИНЦИПЫ МЕХАНИКИ (Л.С. Полак)
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

(Ф. Клейну, к пятидесятилетнему докторскому юбилею)
(Доложено Ф. Клейном в заседании от 26 июля 1918 г.*))
Речь идет о вариационных задачах, которые допускают непрерывную группу (в смысле Ли); вытекающие отсюда следствия для соответствующих дифференциальных уравнений находят свое наиболее общее выражение в теоремах, которые формулируются в § 1 и доказываются в последующих параграфах. Относительно этих дифференциальных уравнений, возникающих из вариационных задач, возможны высказывания, значительно более точные, нежели относительно любых допускающих группу дифференциальных уравнений, которые являются предметом исследований Ли. Итак, последующее изложение базируется на объединении методов формального вариационного исчисления с методами теории групп Ли. Для специальных групп и для вариационных задач это объединение методов не ново; я упомяну Гамеля и Герглоца (Herglotz), занимавшихся специальными конечными группами, Лоренца и его учеников (например, Фоккера), Вейля и Клейна, занимавшихся специальными бесконечными группами **). Вторая статья Клейна и настоящая работа в особенности взаимно повлияли друг на друга; в связи с этим я хотела бы указать на заключительные замечания в статье Клейна.

Categories

1
Оглавление
email@scask.ru