Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Так были заложены основы аналитической механики Гамильтона, ставшие в дальнейшем основой динамики Гамильтона-Якоби. Именно замечательный немецкий математик Якоби блестяще развил, уточнил и значительно обогатил идеи Гамильтона в области интегрирования дифференциальных уравнений движения. Однако физическая сторона проблемы у Якоби обеднена, так как в его изложении утрачиваются всякие следы связи оптики с механикой, всякие следы оптико-механической аналогии. Уже у Якоби оптико-механическая аналогия подвергается забвению, которое продлилось до следующего возрождения проблемы корпускулярно-волнового синтеза в XX в. Зато Якоби не только развил теорию интегрирования дифференциальных уравнений динамики, но и нашел такую форму выражения для принципа наименьшего действия, в которой его глубокая связь с геометрией обобщенного пространства делается особенно прозрачной. из которой с помощью можно получить импульсы, в силу соотношения дважды, как функция от Якоби показал, исходя из этого, что если найдено какое-нибудь общее решение (38), т. е. решение с то достаточно написать: Число постоянных с и Эта связь между дифференциальными уравнениями динамики и дифференциальными уравнениями в частных производных относится к общей теории дифференциальных уравнений в частных производных первого порядка, где она и была открыта Коши в 1819 г. задолго до Якоби. После того как Якоби самостоятельно подметил и изучил эту связь, он получил общую теорию интегрирования дифференциальных уравнений динамики. Метод состоит в том, что вместо непосредственного исследования основных уравнений динамики ищут достаточно общее решение гамильтоновых уравнений в частных производных, из которого интегрирование первых получается, так сказать, само сабой. Общий вид и обоснование этой теории и дал Якоби. В функции или Якоби указывает, что случай, когда одновременно имеют место закон живых сил и принцип наименьшего действия, очень важен : «Гамильтон заметил, что в этом случае задача может быть сведена к нелинейному дифференциальному уравнению в частных производных первого порядка. Если найдено одно его полное решение, то получаются все интегральные уравнения. Функцию, определенную этим дифференциальным уравнением, Гамильтон называет характеристической. Прекрасное соотношение, найденное Гамильтоном, было несколько недоступно и туманно вследствие того, что он свою характеристическую функцию заставил зависеть еще от второго дифференциального уравнения в частных производных. Присоединение этого условия усложняет ненужным образом все открытие, так как более точное исследование показывает, что второе дифференциальное уравнение в частных производных совершенно излишне»*). Для уравнения (42) Якоби доказал, что можно рассматривать любой полный интеграл этого уравнения, т. е. интеграл, содержащий столько произвольных постоянных, сколько имеется независимых переменных. Можно показать, обозначив через где Аналогично для (41), где которое содержит ( Якоби рассматривал только ту форму функций действия, которая основана на функции в то время как мы показали, что совершенно достаточно знать некоторую функцию и содержит, кроме постоянной, прибавляемой к После того как дифференциальные уравнения движения написаны на основании вариационного принципа Гамильтона, возникает вопрос об их фактической интеграции. Для этой цели Гамильтоном и Якоби систематически развита специальная теория. Эта теория имела особое значение для небесной механики и для классической теории атома Бора-Зоммерфельда. Построение этой теории заключает в себе три последовательных этапа. Прежде всего необходимо найти возможно более простую форму дифференциальных уравнений движения. Эта форма была найдена в канонических уравнениях Гамильтона. Затем надо установить общие законы таких преобразований этих дифференциальных уравнений, при которых они сохраняли бы свою форму. Такими законами оказались канонические преобразования и теория важнейших их инвариантов. Наконец, надо развить собственно теорию интегрирования систем канонических уравнений. Решение этой задачи привело к установлению и интегрированию уравнения в частных производных Гамильтона-Якоби. Первое систематическое изложение этих вопросов дал Установить единое правило для строгого решения дифференциального уравнения Гамильтона-Якоби невозможно. Однако во многих случаях можно найти решение благодаря теореме о том, что того, от постоянных интегрирования Тогда уравнение в частных производных распадается на или, разрешая их, В этом случае говорят, что уравнение (45) решается разделением переменных. В той форме, которую придал Якоби принципу наименьшего действия, связь его с законом живых сил видна еще более резко, чем у Лагранжа. Якоби также во многом очень близок Лагранжу. Он говорит, что «трудно найти метафизическую причину для принципа наимсньшего действия, когда он, как это необходимо, выражен в этой истинной форме (46)»*). Значение принципа наименьшего действия, по мнению Якоби, состоит, «во-первых, в той форме, которую он придает дифференциальным уравнениям движения, во-вторых, в том, что он дает функцию, которая обращается в минимум, когда удовлетворяются эти дифференциальные уравнения. Хотя такой минимум существует во всех задачах, но, как правило, неизвестно, где его искать. Поэтому в то время, как самое интересное в этом принципе то, что вообще можно получить минимум, раньше придавали преувеличенное значение тому, что такой минимум существуеть**). Якоби указывает далее, что принципу наименьшего действия должно быть поставлено еще одно важное ограничение. Оно состоит в том, что минимум имеет место не между двумя любыми положениями системы, но только в тех случаях, когда конечное и начальное положения достаточно близки друг другу. Что же касается механического значения принципа наименьшего действия, то оно, по мнению Якоби, состоит в том, что в нем заключаются основные уравнения динамики в том случае, когда имеет место принцип живой силы. Переходя к принципу Гамильтона, Якоби отмечает, что из него можно получить уравнения движения более простым способом, чем из принципа наименьшего действия. Кроме того, этот принцип более общий, чем принцип наименьшего действия, поскольку входящая в него силовая функция может содержать в явном виде также и время закона живых сил, предполагающего, что силовая функция не содержит явно времени. Предположим, что известны При помощи этих интегралов выразим где величины а Функция Подробное рассмотрение всех относящихся сюда работ представляет, собственно говоря, уже задачу истории вариационного исчисления или истории аналитической динамики в целом. Мы же рассмотрим лишь Те из них, которые в той или иной степени существенно обогатили, развили и углубили понимание вариационных принципов механики, прежде всего с математической точки зрения. Первое место по праву принадлежит здесь замечательному русскому математику М. В. Остроградскому. Применяя принцип, сформулированный им в 1834-1835 гг., Гамильтон исходил из допущения, что система может быть и несвободна, но кинетическая энергия является однородной функцией второго порядка от обобщенных скоростей. Таким образом, он неявно предполагал стационарность связей. М.В.Остроградский получил тот же принцип в 1848 г., не налагая этих ограничений, а рассмотрев связанную с ним вариационную проблему в более общем виде*). Поэтому рассматриваемый принцип получил название принципа Гамильтона-Остроградского. Остроградский читал свой «Mémoire sur les équations différentielles relatives aux problèmes des isopérimètres» («Mемуар о дифференциальных уравнениях проблемы изопериметров») 29 ноября 1848 г. на заседании Российской Академии наук и опубликовал его в 1850 г. Вот кратко основная идея Остроградского.. Пусть В формулах Остроградского, как и в формулах динамики, дифференциалы неизвестных выражаются через вариации некоторой функции, которая: зависит только от времени и неизвестных рассматриваемой проблемы. Общая теория, развитая Остроградским, позволяет ему утверждать, чтоего основная формула «содержит как частный случай динамический принцип наименьшего действия», который поэтому «нельзя рассматривать не: только как принцип, но даже как простую теорему. Он кажется нам только простым следствием, очевидным результатом применения метода вариаций к теории maxima и minima»***). Остроградский указывает, что анализ Лагранжа в той части его аналитической механики, где он выводит уравнение движения из принципа наименьшего действия вместе с законом живых сил, неточен. Остроградский считает, что в силу применения закона живых сил между некторыми переменными, которые Лагранж полагает независимыми, существует зависимость. Излагая в несколько измененном виде вывод принципа наименьшего действия Лагранжем, Остроградский отмечает то чрезвычайно существенное обстоятельство, что вариации Эту особенность он положил в основу своей формулировки вариационных принципов в динамике.
|
1 |
Оглавление
|