Главная > ВАРИАЦИОННЫЕ ПРИНЦИПЫ МЕХАНИКИ (Л.С. Полак)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Известно, что если покоящаяся система действует на внешние тела силами, подчиняющимися закону сохранения энергии, то эти силы должны удовлетворять некоторым соотношениям, которые могут быть выражены

уравнениями
Pipj=Pjpi,

и что если эти уравнения имеют место, то может быть найдено значение потенциальной энергии.

Для движущихся систем, которые удовлетворяют закону минимума кинетической энергии, точно так же можно составить подобные соотношения, получаемые непосредственно из лагранжевых выражений для сил. При этом последние должны рассматриваться не только как функции координат pi, как это делается для покоящихся систем, а также как функции скоростей qi и ускорений
qi=dqidt.

Уравнение (4)
Pi=Hpi+ddt(Hqi)

дает непосредственно
Pi=Hpi+j(2Hqipjqj)+j(2Hqiqjqj).
A. Силыи ускорения

Силы, представленные в такой форме, являются линейными функциями ускорений. Козффициент при qj в выражении для силы Pi может быть выражен следующим образом :
Piqj=2Hqiqj=Pjqi,

что означает следующее: Если ускорение qj увеличивает силу Pi в некоторое число раз, то ускорение qi увеличивает силу Pj во столько же раз. Имеет ли место подобное явление в каком-либо данном определенном случае, зависит от того, будет ли величина 2Hqiqj отлична от нуля или равна нулю. Эта величина равна нулю, например, для движений совершенно свободной системы весомых материальных точек, если они отнесены к прямоугольной системе координат. Каждая отдельная составляющая силы действует ускоряюще только в направлении той координаты, которой она соответствует.
Для волчка в примере 1§2 мы имеем :
Aβ=Bα=0,Aγ=Cα=Acosβ,CβBγ=0,

где α,β и γ ускорения углов α,β и γ.

В примере 2 для электродинамических действий мы имеем :
PiIj=Ejqi=0,EjIk=EkIj.

Первое уравнение имеет следующий смысл : так как пондеромоторная сила в цепи электрического тока не зависит от ускорения токов, то и индуцированная электродвижущая сила не может зависеть от ускорения проводников тока (однако в том и другом случае возможна зависимость от скоростей). Последнее уравнение говорит, что если при заданном положении и форме цепей тока b и c увеличение силы Fj, действующей в b, посредством электродинамической индукции заставляет возрасти величину Ik, то равное возрастание силы Fk производит такое же действие на Ij.

В примере 3 , где рассматриваются термодинамические действия, эти взаимные зависимости отпадают, так как живая сила L тяжелых масс не зависит от температуры, а следовательно, произведения ϑqi не встречаются в выражении для
FL=H
B. Соотношения между силами и скоростями

Из уравнений (38) далее следует :
Piqj=2Hpiqj+2Hpjqi+ddt(2Hqiqj).

Следовательно,
Piqj+Pjqi=2ddt(2Hqiqj)=2ddt(Piqj)=2ddt(Pjqi).

В очень большом числе случаев
Piqj=Pjqi=2Hqiqj= const ,

отсюда следует :
Piqj=Pjqi,
т. е.: Если увеличение скорости qj при сохранении постоянного положения и постоянных ускорений вызывает возрастание силы Pi, то соответствующее увеличение скорости qi уменьшит силу Pj. В примерах А) уже обращалось внимание на случаи, в которых предварительное условие (51) выполнено. Эти примеры лучше всего показывают широкое значение этого предложения, но они показывают также, что нужно убедиться в выполнении предварительного условия, прежде чем применять вместо общего уравнения (50) упрощенное выражение (52).

Пример 1. Волчок. Если сила, которая увеличивает угол β, т. е. стремится удалить ось волчка от вертикали, поддерживает более быстрое прецессионное движение at, то сила, которая стремится ускорить прецессию, будет приближать ось к вертикали.

Пример 2. Закон электродинамической индукции (закон Ленца). Относительное движение двух электрических цепей, которое поддерживается пондеромоторными электродинамическими силами, вызывает инду-

цированные электродвижущие силы, которые противодействуют имеющимся токам.

Соответствующая зависимость обнаруживается при движении магнита относительно проводника тока.

Пример 3. Термодинамика: Если повышение температуры увеличивает давление в системе тел, то сжатие этой последней вызовет повышение температуры.

Для этого случая мы можем, используя обозначения и пояснения § 2 к этому примеру, написать уравнение (52) после умножения обеих частей на η в таком виде:
qi(P(η)η)=Pilnη,

или в соответствии с формулой (37) :
qi(dQdt)=+Pilnη.

Но на основании уравнения (34)
dQdt=ηdsdt=ηi(spiqi)ηsηdηdt.

Следовательно,
qi(dQdt)=ηspi.

Согласно уравнению (35) мы имели
Pi=pi(HL)ddt(Lqi),

а так как L не зависит от η, то
Piη=2Hpiη=spi,

что совместно с уравнением (54) подтверждает справедливость уравнения (53), а тем самым и применимость нашего общего предложения. При этом можно было бы любую из функций η уравнения (33) рассматривать как скорость; нужно только, чтобы тогда соответственно величина dηdt фигурировала в качестве ускорения. Температура ϑ также принадлежит к числу интегрирующих делителей η, так что имеет место уравнение
qi(dQdt)=Pilnϑ.

Так как в этом примере производная dϑdt должна равняться нулю, то величина qi(dQdt) есть скорость, с которой поступает тепло, когда параметр pi растет со скоростью qi, в то время как ϑ остается постоянной. Отсюда получается данная выше формулировка предложения.

Те же самые соображения могут быть применены к необратимым частям термоэлектрических и электрохимических процессов.

Явление Пельть е. Если нагревание какого-либо места замкнутой цепи производит электрический ток, то тот же самый ток вызовет охлаждение того же места цепи (если отвлечься от нагревания вследствие электрического сопротивления).

Электрохимия. Если нагревание постоянного гальванического элемента увеличивает электродвижущую силу, то прохождение тока в том же элементе вызовет переход теплоты в скрытое состояние*).

Вышеприведенные формулы, однако, указывают не только знак соответствующего изменения, но одновременно дают указание и на количества, о которых идет речь.
C. Зависимости между силами и координатами
Наконец, из уравнения (48) следует :
PipjPjpi=ddt(2Hqipj2Hqjpi)=12ddt(PiqjPjqi).

Для случая покоя, когда правая часть обращается в нуль, отсюда получается общий закон консервативных сил :
Pipj=Pjpi.

Но то же самое условие выполняется, если временами движение происходит так, что правая часть уравнения (56) оказывается равной нулю. Тут мы также можем применить закон (57), чтобы образовать для сил нагретых тел или соответственно моноциклических систем силовую функцию, если только во время движения одна из функций η в уравнении (33) остается постоянной. Если мы при этом пренебрежем живой силой L упорядоченных движений, то согласно уравнению (35) мы будем просто иметь
Pi=Hpi,
т. е. наше уравнение (57) удовлетворяется. Но с этим случаем мы встречаемся почти всегда, когда занимаемся механикой земных тел, более или менее нагретых. Несмотря на то, что тела внутри одержимы сильным движением, мы можем, например, для теории их упругих действий на основании доказанного здесь закона образовать силовые функции молекулярных сил и применять их так, как если бы их состояние равновесия было устойчивым в абсолютном покое.

Я хочу здесь еще заметить, что для того чтобы доказать, что существует кинетический потенциал и что силы Pi могут быть по способу, указанному Лагранжем, выражены через его производные и что уравнения движения могут быть сведены к принципу наименьшего действия, оказывается достаточно соотношений взаимности для сил, выражаемых уравнениями :
Piqj=Pjqi,Piqj+Pjqi=2ddt(Pjqi),PipjPjpi=12ddt(PiqjPjqi)

(в связи с тем, что Pi являются линейными функциями qi, т. е.
2Piqjqk=0,

и с ранее данными определениями :
qi=dpidt,qi=dqidt.

Итак, перечисленные здесь зависимости между силами полностью характеризуют те движения, к которым применим принцип наименьшего действия.

Доказательство этого предложения для случая, когда имеется не более трех координат pi, может быть дано непосредственно методами современного математического анализа. Для этого нужно, однако, воспользоваться предложениями из области теории потенциальных функций в пространстве трех измерений. Для перехода к большему числу координат потребуются соответствующие предложения для большего числа координат. Их можно получить в той мере, в қакой они нужны для нашего доказательства. Но так как это вопрос, имеющий самостоятельный интерес, то мне кажется нецелесообразным решать его здесь попутно, и я поэтому предпочитаю дать указанное доказательство при другом, более удобном случае.

Другие общие свойства движений, происходящих с соблюдением принципа наименьшего действия, будут изложены в следующих параграфах.

1
Оглавление
email@scask.ru