Главная > Курс высшей математики, Т.5.
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

148. Инвариантные подпространства.

Для исследования непростого непрерывного спектра и смешанного спектра, т. е. того случая, когда собственные элементы существуют, но не образуют аамкнутой системы элементов, нам надо предварительно ввести новое понятие и доказать некоторые факты.

Определение. Подпространство L называется инвариантным подпространством для оператора А при соблюдении следующего условия: если то и Иначе в этом случае говорят, что L приводит А.

Смысл этого определения состоит в следующем. Если L приводит А, то оператор А можно рассматривать отдельно как оператор, определенный в L, причем L или конечномерно, или его можно считать гильбертовым пространством. Иначе говоря, оператор А, определенный во всем , индуцирует оператор, определенный в L, который для элементов из L совпадает с А. Рассмотрение А на отдельных инвариантных подпространствах облегчает изучение А. Отметим, что если А — самосопряженный оператор в Н, то он будет, очевидно, самосопряженным оператором и в любом инвариантном для него подпространстве. В дальнейшем мы будем изучать инвариантные подпространства лишь для самосопряженных операторов.

Теорема 1. Если подпространство L приводит самосопряженный оператор А, то и дополнительное подпространство приводит А. Для того чтобы L приводило самосопряженный оператор А, необходимо и достаточно, чтобы проектор коммутировал с А, т. е.

Если L приводит А, то при . Нам надо доказать, что если то и Пусть z — любой элемент из L. При эгом и мы имеем

и высказанное выше утверждение доказано. Переходим к доказательству условия (265). Пишем очевидное равенство

Если L приводит А, то и, в силу только что доказанного, , и, следовательно, первое слагаемое правой части есть проекция при любом и необходимость (265) доказана. Пусть, наоборот, выполнено (265) и . При этом и теорема полностью доказана. Пользуясь теоремой 2 из получаем следующее непосредственное следствие доказанной теоремы:

Следствие. Для того чтобы подпространство L приводило А, необходимо и достаточно, чтобы оно приводило при любом

Теорема 2. Если попарно ортогональные подпространства приводят А, то и их ортогональная сумма

приводит А.

По условию теоремы А коммутирует со всеми и тем самым оно коммутирует с их суммой

что и доказывает теорему. Теорема 2 справедлива и в том случае когда А несамосопряженный оператор.

Отметим некоторые простые факты, связанные с понятием инвариантного подпространства самосопряженного оператора. Если проектор коммутирует с проектором PL, то L приводит и оператор индуцирует в L проектор в подпространство LM. Пусть далее L приводит А и тем самым приводит его спектральную функцию Обозначим через те операторы, которые индуцируются в L операторами А и Нетрудно проверить, что есть разложение единицы для Если в формуле то мы можем заменить А на на есть спектральная функция оператора определенного в L. В силу (223), L приводит и резольвенту R, оператора А, причем индуцирует в L резольвенту оператора Пусть операторы, индуцированные самосопряженным оператором и в инвариантном подпространстве L и дополнительном подпространстве разложение Имеем очевидные равенства:

Аналогичные формулы имеют место при разложении Я на конечное или счетное число попарно ортогональных подпространств, приводящих А. Все пространство Я и нулевое подпространство, т. е. подпространство, содержащее один нулевой элемент, являются тривиальными инвариантными подпространствами для любого оператора. Если оператор не имеет других инвариантных подпространств, то он называется неприводимым оператором. Всякое подпространство собственных элементов, соответствующих некоторому собственному значению оператора А, есть инвариантное подпространство для А, и в этом подпространстве оператор А сводится к умножению элемента на число Если какой-либо собственный элемент, соответствующий собственному значению то совокупность элементов вида , где а — любое комплексное число, есть также подпространство, приводящее А Если суть все подпространства собственных элементов самосопряженного оператора А, то их ортогональная сумма приводит А. Пусть А и операторы, индуцированные в операторами . Мы имеем, согласно (234) и (236),

т. е. сводится к сумме скачков функции в точках X, удовлетворяющих условию ХХ. Оператор индуцированный в подпространстве дополнительном для , представляет собой проектор в подпространство где подпространство, соответствующее проектору Любой элемент Я" ортогонален во всем если и для любого принадлежащего мы можем представить в виде разности

и, следовательно, непрерывно при всех X. Таким образом, если спектр А не чисто точечный, то подпространство содержит элементы, отличные от нулевого, спектральная функция непрерывна в нем, и оператор не имеет вовсе собственных значений в собственные элементы образуют замкнутую систему, и оператор А имеет чисто точечный спектр в .

1
Оглавление
email@scask.ru