Главная > Теоретическая механика. Статика. Динамика точки, Т.1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

III. Общие условия равновесия, выводимые из принципа возможных скоростей

170. Основное уравнение статики.

Мы будем следовать методу, указанному Лагранжем. Пусть задана система, образованная точками

и подчиненная связям, выражаемым такими равенствами, какие рассматривались в предыдущем..

Обозначим через равнодействующую заданных сил, действующих на точку На основании принципа возможных скоростей составляем уравнение

которое должно удовлетворяться для всех перемещений допускаемых связями. Можно сказать, что это уравнение является общим уравнением статики.

171. Приведение уравнений равновесия к наименьшему числу.

В каждой частной системе для получения наиболее общего возможного перемещения, допускаемого связями, необходимо и достаточно

сообщить параметрам произвольные вариации Тогда говорят, что рассматриваемая система имеет к степеней свободы.

Например, для получения наиболее общего перемещения точки по поверхности (п. 159) необходимо и достаточно сообщить двум параметрам произвольные вариации ; следовательно, точка на поверхности является системой с двумя степенями свободы.

Для получения наиболее общего перемещения свободного твердого тела достаточно сообщить ему три произвольных бесконечно малых поступательных перемещения, параллельных трем осям координат, и повернуть его на три произвольных бесконечно малых угла вокруг этих трех осей. Следовательно, свободное твердое тело является системой с шестью степенями свободы.

Возьмем еще систему, образованную твердой материальной окружностью, которая катится без скольжения по неподвижной плоскости Р (обруч). Для выражения связи нужно написать, что скорость материальной точки, находящейся в соприкосновении, равна нулю. Следовательно, для того чтобы сообщить обручу перемещение, допускаемое связью, необходимо и достаточно сообщить ему вращение на бесконечно малый угол вокруг произвольной оси, проходящей через точку касания. Но это элементарное вращение может быть всегда разложено на три: одно вокруг нормали к неподвижной плоскости в точке касания А, другое вокруг касательной к обручу в точке А, и третье вокруг нормали к обручу, проведенной в точке А в неподвижной плоскости. Следовательно, обруч образует систему с тремя степенями свободы.

Вернемся к общему случаю системы с степенями свободы. Так как, по предположению, перемещение системы определяется бесконечно малыми вариациями то вариации координат различных точек системы будут определенными, если известны Для этих вариаций должны иметь место выражения вида

Если внести эти выражения в основное уравнение статики

то оно примет вид

в котором

Так как уравнение (3) должно выполняться при любых то должно быть одновременно

Таким образом, получились к необходимых и достаточных уравнений равновесия. Число этих уравнений в точности равно числу степеней свободы системы.

1
Оглавление
email@scask.ru