Главная > Теоретическая механика. Статика. Динамика точки, Т.1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

256. Приложение теорем Томсона и Тэта к брахистохронам.

В главе VII мы указали несколько интересных свойств кривых, обращающих в минимум интеграл вида

Эти свойства, если их, в частности, приложить к брахистохронам, получают простое выражение. Брахистохроны в случае сил, имеющих силовую функцию , получаются как кривые, обращающие в минимум интеграл

где имеет определенное значение. Если эта постоянная выбрана, то во всех рассматриваемых движениях начальное положение и величина начальной скорости связаны соотношением

Следовательно, интеграл (1) совпадает тождественно с интегралом (2), если принять

и значение интеграла I вдоль участка какой-нибудь кривой будет в точности равно времени которое понадобится точке массы единицы, чтобы переместиться по этой кривой под действием рассматриваемой силы и при указанных начальных условиях из А в В.

Брахистохроны будут тогда кривыми, которые раньше были названы кривыми (п. 146), зависящими от четырех произвольных постоянных. Например, если принять то брахистохроны будут циклоидами, лежащими в вертикальных плоскостях ниже плоскости и имеющими точки возврата на плоскости

Возвращаясь к общему случаю, мы можем основную формулу Тэта и Томсона выразить так:

Пусть — две бесконечно близкие брахистохроны, описываемые точкой массы 1, — первая за время а вторая за время тогда имеем (п. 147)

где и являются значениями функции на концах А и В.

Тогда из формулы Тэта и Томсона, полученной в п. 147, вытекают следующие результаты:

1°. Если заданы две неподвижные поверхности S и 2, то кривая, которую нужно провести между ними таким образом, чтобы движущаяся по ней при указанных начальных условиях точка описала ее за минимальное время, является брахистохроной, которая одновременно нормальна к обеим поверхностям. Теорема остается справедливой, если одна или обе эти поверхности заменяются кривой или точкой.

Например, если даны точка А и плоскость Р, то кривая, которую нужно провести от А до плоскости таким образом, чтобы пущенная по этой кривой из А без начальной скорости тяжелая точка достигла плоскости за кратчайший промежуток времени, является циклоидой с горизонтальным основанием, лежащей в вертикальной плоскости, имеющей в А точку возврата и пересекающей нормально плоскость Р.

2°. Если взять брахистохроны, нормальные к поверхности S и по каждой из них в момент пустить при указанных начальных условиях одинаковые материальные точки, то в любой момент времени все эти точки будут находиться на поверхности также нормальной к брахистохронам. (Эта теорема была указана уже Эйлером.)

Например, если взять все циклоиды, имеющие в точке А точку возврата и вертикальную касательную и по каждой из них в момент пустить из А без начальной скорости тяжелую точку, то в момент все эти точки будут находиться на поверхности нормальной ко всем циклоидам. В данном примере поверхность S сводится к точке А; поверхность S будет, очевидно, поверхностью вращения вокруг

Мы предлагаем в качестве упражнения проверить это утверждение.

3°. Наконец, формула Тэта и Томсона позволяет высказать для брахистохрон теоремы, аналогичные свойствам разверток, если заменить в классических формулировках длины дуг промежутками времени, которые затрачивает для их описания точка, скользящая по ним без трения. Мы не будем здесь останавливаться на этом вопросе, который мы предлагаем в качестве упражнения.

1
Оглавление
email@scask.ru