Главная > Энциклопедия кибернетики. Т.2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ПОВЕДЕНИЕ АВТОМАТОВ В СЛУЧАЙНЫХ СРЕДАХ.

Исследование поведения конечных и стохастических автоматов в случайных средах как самостоятельный раздел теоретической кибернетики получило широкое развитие лишь в начале 60-х гг. 20 ст., начиная с работ сов. математика М. Л. Цетлина (1924—66). Он ввел осн. понятия, сформулировал и решил ряд задач для случая стационарных и составных (состоящих из стационарных) сред при дискретном времени. В качестве иллюстрации был предложен автомат с линейной тактикой, обладающий при определенных условиях асимптотически оптим. поведением в стационарной среде и оптим. емкостью памяти в составной.

Впоследствии другие исследователи предложили конструкции асимптотически оптим. автоматов и изучали различные их свойства. В начальный период развития этого направления появились работы, посвященные исследованию поведения в случайных средах автоматов с переменной структурой и обучению автоматов. Имеются работы и для случая непрерывного времени. Значительное к-во результатов дал подход, использующий аппарат теории восстановления и теории полумарковских случайных процессов. Были исследованы автоматы со случайным временем реакции. Применение новых теоретико-вероятностных результатов оказалось плодотворным и для случая составных сред. В подавляющем большинстве работ рассматриваются двухвходовые автоматы. Имеются результаты исследования оптим. поведения в стационарных случайных средах автоматов со многими входами.

Особенно интенсивно исследуется коллективное П. а. в с. с. Стохастический автомат А определяют как систему, имеющую конечное число входов и конечное число внутр. состояний Число считают емкостью (объемом) памяти автомата. Для каждого значения входной переменной s задана своя матрица переходов состояний автомата

Следует заметить, что автомат с линейной тактикой и его обобщение на случай К действий к, обладает асимптотически оптим. поведением лишь в тех средах, где , т. е. имеется возможность получить неотрицательный средний выигрыш хотя бы за одно какое-либо действие. Были предложены и исследованы также стохастические автоматы, не имеющие этого свойства. Кроме того, А имеет выходную переменную, которая может принимать значений , однозначно определяемых состоянием. Обозначив через соответственно состояние автомата, значение его входной в выходной переменных в момент можно полностью определить функционирование стохастического автомата соотношениями

Считают, что входная переменная s может принимать лишь два зцачения: которые рассматривают соответственно как нештраф и штраф.

Под функционированием А в случайной среде понимают следующее: если в момент t автомат находится в состоянии которому соответствует действие то в момент на вход автомата поступит штраф с вероятностью и нештраф с вероятностью Среда именуется стационарной, если ее

вероятностные характеристики не меняются во времени.

Нетрудно показать, что функционирование стохастического автомата в стационарной случайной среде описывается конечной однородной Маркова цепью. Естественно предположить у этой цепи наличие предельных вероятностей состояний: Для вычисления математического ожидания штрафа автомата А в среде С используют где таково

Графы состояний автомата

Говорят, стохастический автомат обладает целесообразным поведением в случайной среде, если Автомат А наз. асимптотически оптимальным в среде С, если

Задача оптимизации поведения автомата А в случайной среде С заключается в таком варьировании переменных параметров автомата, при котором минимизируется величина . В качестве примера целесообразного и асимптотически оптимального при автомата рассмотрим конечный автомат названный автоматом с линейной тактикой. Этот автомат имеет состояний И может производить два действия, причем

Графы состояний автомата приведены на рис. Здесь величины обозначают вероятность перехода автомата из состояния в состояние под воздействием входного сигнала s. В частном случае, если у стохастических матриц в каждой строке стоит одна единица, а все остальные элементы строки — нули, то соответствующий автомат А наз. детерминированным конечным автоматом.

В качестве важной характеристики поведения автомата можно рассматривать и функцию штрафов s (Т), определяющую средний штраф, выплачиваемый автоматом за время Т. При рассмотрении поведения в стационарных средах автоматов более сложных конструкций, чем часто исследуют скорость сходимости аеличины к ее минимуму.

При исследовании П. а. в с. с. непрерывность во времени можно рассматривать по-разному. Назовем автоматом со случайным временем реакции такой стохастический автомат, для которого время пребывания в состоянии является некоторой положительной случайной величиной с произвольной ф-цией распределения Функционирование такого автомата в случайной среде описывается некоторым полумарковским процессом. Можно рассматривать автоматы, у которых время реакции зависит только от входного сигнала или от предыдущего состояния и т. д. Используя наличие у Полумарковских процессов стационарного распределения и применяя метод стохастических уравнений, можно успешно решать задачи о среднем штрафе, выплачиваемом за время t, о времени пребывания автомата в некотором подмножестве его состояний и другие. Наличие у таких автоматов новых параметров средних времен реакции — открывает новые возможности для решения задач оптимизации.

Отдельно рассмотрим задачу о поведении стохастических автоматов в составных случайных средах при дискретном времени. Составной наз. среда , состоящая из нескольких стационарных случайных сред переключение которых осуществляется цепью Маркова Д с v состояниями. В простейшем случае где Автомат А функционирует в простейшей составной среде К, если в каждый дискретный момент времени он функционирует в среде или том смысле, как говорилось выше). При этом, если в момент t автомат находится в среде то в момент он будет с вероятностью функционировать в той же среде в с вероятностью в другой. В этом случае

Здесь — предельные вероятности марковской цепи, описывающей поведение автомата в стационарной среде вероятностные параметры среды . Аналогично для среды . В простейшем случае (среды и симметричные) для автомата дсказано. что величина достигает своего

минимума при некотором фиксированном значении , т. е. существует некоторое оптим. значение емкости памяти автомата с линейной тактикой при его функционировании в простейшей составной случайной среде.

Лит.: Цетлин М. Л. Исследования по теории автоматов и моделированию биологических систем. М., 1969 [библиогр. с. 306—316]. В. Я. Валах.

1
Оглавление
email@scask.ru