Главная > Энциклопедия кибернетики. Т.2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ПРОГРАММИРОВАНИЕ ДИНАМИЧЕСКОЕ

- раздел программирования математического, изучающий многошаговые процессы поиска решения. В различных областях теор. и практической деятельности целесообразно искать решение не сразу, а последовательно, шаг за шагом, т. е. поиск решения рассматривается не как единичный акт, а как процесс, состоящий из нескольких этапов. Различные задачи многошаговых процессов поиска решения могут быть описаны некоторым единообразным матем. аппаратом. Таким аппаратом является теория П. д., созданная в течение 50-х годов 20 ст. амер. математиком Р. Веллманом и его учениками. В задачах, решаемых методами П. д., имеется физ. система, характеризуемая на любом шаге параметрами состояния; на каждом шаге принимается одно из допустимого мн-ва решений, результатом чего является преобразование параметров состояния; предыстория системы не имеет никакого значения при определении будущих действий. Любое правило для поиска решения, которое дает допустимую последовательность решений, наз. поведением (политикой). Целью «процесса является опт-ция некоторой ф-ции параметров состояния и политики — ф-ции критерия (дохода). Поведение, оптимизирующее ф-цию критерия, наз. оптимальным поведением.

В основе теории П. д. лежит Веллмана принцип оптимальности. Матем. формулировка этого принципа приводит к ур-ниям, решение которых определяет оптим. поведение и оптим. доход. Пусть имеется детерминированный дискретный процесс поиска решения, характеризуемый вектором состояния , которое определено для конечного числа шагов N и принадлежит мн-ву D. Далее, где q — элемент некоторого мн-ва , представляет собой мн-во преобразований, обладающее тем свойством, что, если то ей для всех . Для конечного процесса каждое поведение состоит в выборе N преобразований дающих одно за другим последовательность состояний

Эти преобразования должны быть выбраны так, чтобы максимизировать ф-цию Обозначим через макс. значение ф-ции критерия, если начальное состояние процесса описывается вектором и до окончания процесса осталось i шагов, т. е.

Для получения рекуррентного соотношения, связывающего члены последовательности воспользуемся принципом оптимальности Веллмана. Пусть на шаге в качестве решения выбирают некоторое преобразование так что в результате получают новый вектор состояния . Доход, получаемый после осуществления шага процесса, равен Макс. доход, получаемый после осуществления оставшихся шагов процесса, равен по определению Поэтому для максимизации полного дохода от осуществления всех i шагов процесса q следует выбрать так, чтобы максимизировать сумму

Т. о., получают рекуррентные соотношения:

Имея конкретные значения с помощью этих соотношений можно находить оптим. поведение и оптим. доход, а именно: из соотношения (2) находят политику при которой достигается максимум правой части, и соответствующий доход Далее, зная из соотношения

находят и т. д. Наконец, зная из соотношения

находят и оптим. доход Тогда оптим. поведение на первом шаге - -шагового процесса будет а оптим. состояние На втором шаге оптим. поведение и состояние будет соответственно и т. д. На

шаге они будут соответственно . В случае неограниченно продолжающегося процесса являющегося однородным соотношения (1) — (2) заменяются функциональным уравнением

Для решения ур-ний такого рода применяют метод последовательных приближений в простр. доходов, состоящий в выборе начальной ф-ции и последующем определении последовательности ф-ций

Другой метод — метод приближения в пространстве поведений, состоящий в том, что в качестве начального приближения выбирают некоторое и из функционального ур-ния определяют доход, соответствующий этому поведению. Далее, как в обычном методе последовательных приближений, полагают

При этом последовательность является неубывающей.

Метод П. д. применяют для решения задач оптим. управления. Пусть ур-ние движения управляемого объекта имеет вид

вектор состояния, а вектор управления (поведение) в момент . Здесь замкнутая область -мерного евклидового простр. (см. Пространство абстрактное в функциональном анализе). Требуется минимизировать интеграл

Обозначим через миним. значение интеграла (6) при условии, что объект стартует из точки фазового простр., т. е.

Тогда при условии существования частных производных получается Веллмана уравнение для ф-ции

Минимума правая часть ур-ния (8) достигает на некоторой ф-ции так что, решив это ур-ние, получим оптим. управление как ф-цию фазовых координат . Однако решить ур-ние (8) для общего случая трудно. Кроме того, трудно обосновать справедливость этого ур-ния, поскольку ф-ция , как правило, не является всюду дифференцируемой для большинства практических задач. Поэтому при реализации этого метода на ЭЦВМ дискретизируют исходную задачу (5—6) и решают получаемые при этом рекуррентные соотношения. Метод П. д. применяют также для решения задач стохастических управляемых процессов, многошаговых игр и др.

В начале 60-х годов 20 ст. в Ин-те кибернетики АН УССР был разработан весьма эффективный численный метод решения задач П. д. — метод последовательного анализа вариантов, состоящий в последовательном поэтапном конструировании конкурентоспособных вариантов.

Лит.: Михалевич В. С. Последовательные алгоритмы оптимизации и их применение. «Кибернетика», 1965, № 1—2; Беллман Р. Динамическое программирование. Пер. с англ. М., 1960; Беллман Р., Дрейфус С. Прикладные задачи динамического программирования. Пер. с англ. М., 1965. В. П. Гуленко, В. С. Михалевич.

1
Оглавление
email@scask.ru