Главная > Энциклопедия кибернетики. Т.2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

— характеристики, получаемые при применении преобразования Фурье импульсной переходной функции (импульсной характеристики). Для устойчивой линейной стационарной системы или подаче на вход гармонического колебания ее установившаяся реакция . Отношение комплексных изображений выходной и входной величин такой системы в установившемся режиме гармонических колебаний

есть ее частотная характеристика (амплитуд-но-фазовая частотная характеристика, комплексная передаточная ф-ция, комплексная частотная ф-ция). В нестационарной линейной системе амплитуда и сдвиг фазы выходных колебаний изменяются во времени, поэтому частотная характеристика зависит от времени t как параметра и называется параметрической. Аналитически можно получить из передаточной функции заменой параметра Лапласа преобразования s на .

Частотная характеристика лежит в основе получения различных видов характеристик систем автомат, управления. В соответствии с (1) модуль частотной характеристики есть отношение амплитуд выходного и входного колебаний системы его зависимость от частоты представляет амплитудную частотную характеристику системы. Аргумент частотной характеристики определяет сдвиг по фазе выходного колебания системы относительно входного колебания, а его зависимость от частоты наз. фазовой частотной характеристикой системы. Амплитудную и фазовую частотные характеристики можно определить аналитически или (для устойчивых систем) экспериментально, подавая на вход системы синусоидальное воздействие известной частоты и измеряя отношение амплитуд и сдвиг фаз между выходными установившимися колебаниями и входным воздействием.

Частотную характеристику при фиксированном значении частоты можно изображать радиус-вектором в полярной системе координат. Кривая, описываемая концом вектора при изменении частоты от 0 до амплитудно-фазовой частотной характеристикой системы. При построении годографа этой характеристики в декартовой системе координат представляют в виде где вещественная (реальная) частотная характеристика, мнимая частотная характеристика системы.

Логарифмические частотные характеристики находятся логарифмированием выражения Кривые зависимости от частоты, отложенной в логарифм, масштабе, наз. соответственно логарифм, амплитудной частотной характеристикой системы и логарифмической фазовой частотной характеристикой. Обычно на практике по оси ординат откладывают не а пропорциональную ему величину

, измеряемую в децибелах. Так как при логарифмировании произведение амплитудных характеристик звеньев системы заменяется суммой их логарифм, амплитудных частотных характеристик, то применение логарифм. частотных характеристик упрощает исследование систем автомат, управления. Между для класса минимальнофазовых систем существует взаимно однозначная связь. Частотная характеристика линейных стационарных импульсных систем определяется через импульсную переходную функцию либо через частотную характеристику приведенной непрерывной части соответственно следующим образом:

где — относительная частота, Т — период импульсного элемента (см. Функция решетчатая). Ее можно получить также из передаточной функции заменой z на

Частотную характеристику импульсной системы можно представить в виде при этом, как и для непрерывных систем, зависимости определяют соответственно амплитудную и фазовую частотную характеристики, а кривая, описываемая концом вектора , — амплитудно-фазовую частотную характеристику. В отличие от непрерывных систем частотная характеристика импульсных систем является функцией не только частоты но и параметра , в связи с чем эти системы характеризуются семейством частотных характеристик при разных значениях е. Частотные характеристики импульсных систем являются периодическими ф-циями частоты с периодом

В системах управления на переменном токе полезный сигнал после модулятора представляется огибающей амплитудно-модулированного сигнала несущей частоты. При исследовании таких систем применяются частотные характеристики по огибающей — т. н. эквивалентные частотные характеристики.

Ч. х. с. а. у. используют при анализе устойчивости, качества переходных процессов и динамической точности, синтезе корректирующих устройств и т. д. См. также Лапласа дискретные преобразования, Дискретных систем автоматического управления синтез, Дискретных систем автоматического управления анализ, Непрерывных систем автоматического управления синтез, Устойчивости дискретных систем теория.

Лит.: Красовский А. А., Поспелов Г. С. Основы автоматики и технической кибернетики. М. Л., 1962 [библиогр. с. 596—600]; Цыпкин Я. 3. Теория линейных импульсных систем. М., 1963 [библиогр. с. 926—963]; Бесекерский В. А., Попов Е. П. Теория систем автоматического регулирования. М., 1972 [библиогр. с. 756—760]; Теория автоматического регулирования, кн. 1-2. М., 1967 [библиогр. кн. 1, с. 743-763; кн. 2, с. 653—6741.

Г. Ф. Зайцев.

1
Оглавление
email@scask.ru