Главная > Энциклопедия кибернетики. Т.2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

МОНТЕ-КАРЛО МЕТОД

численный метод, основанный на воспроизведении большого числа реализаций случайного процесса, специально построенного по условиям задачи. Этот случайный процесс формируется т. о., чтобы его вероятностные характеристики (вероятности некоторых событий, математические ожидания случайных величин, вероятности попадания траекторий процесса в заданную область фазового пространства и т. д.) были равны искомым величинам рассматриваемой задачи.

Сущность можно пояснить на следующем примере- Пусть требуется вычислить значение

где — для всех х, удовлетворяющих условию Предположим, что в нашем распоряжении имеется достаточно обширная совокупность независимых случайных чисел получаемых в результате некоторого случайного эксперимента), являющихся возможными значениями случайной величины которая распределена равномерно в интервале (0,1). Очевидно, что пары случайных чисел можно интерпретировать как случайные точки, равномерно распределенные в единичном квадрате. Последнее означает, что вероятность попадания случайной точки в некоторую область Q, принадлежащую единичному квадрату, пропорциональна площади области и не зависит от расположения ее в единичном квадрате. Для любой пары можно проверить справедливость неравенства

Если это неравенство выполнено, точка лежит на кривой или ниже ее (событие А), в противном случае — точка располагается выше кривой (событие А). Проведем N испытаний, состоящих в выборе пар и проверке неравенств вида (2).

Пусть число точек, для которых это неравенство

выполнено, равно . Тогда отношение является частотой наступления события Известно, в силу больших чисел закона, что частота некоторого события при достаточно больших N весьма близка к вероятности этого события. В рассматриваемом случае вероятность Р (А) представляет собой долю площади единичного квадрата, приходящуюся на ту его часть, которая расположена под кривой и поэтому равна искомому значению интеграла (1). Т. о., частоту можно принять в качестве приближенного значения интеграла К рассматриваемой задаче возможен и другой подход. Пусть ф-ция плотности вероятностей некоторой случайной величины в интервале совпадающем с областью интегрирования. Тогда выражение

представляет собой матем. ожидание ф-ции Как известно, в качестве приближенного значения для величины матем. ожидания может быть принято среднее арифметическое

если N достаточно велико. В выражении независимые случайные числа, являющиеся возможными значениями случайной величины с законом распределения

Представление о точности и требуемом числе реализаций N можно получить из следующих рассуждений. Пусть речь идет о вычислении значения h — интеграла h в соответствии с рассматриваемой выше процедурой. Значение имеет точность и достоверность а, если вероятность

В силу теоремы А. Я. Хинчина частота при достаточно больших N имеет распределение, близкое к нормальному, поэтому

где, в нашем случае, и, по таблицам нормального распределения, для для и т. д. Отсюда число реализаций N, необходимое для вычисления с точностью и достоверностью а, равно

Вследствие сравнительно большого числа реализаций, необходимого для вычисления результата с достаточной точностью и достоверностью, широкое практическое применение получил в связи с использованием цифровых вычислительных машин (ЦВМ), где вырабатываются случайные числа, являющиеся исходным материалом для реализации

Общая схема применения состоит в построении и запоминании возможных значений некоторой случайной величины зависящей от траекторий случайного процесса. Среднее значение этой величины, полученное в результате осуществления достаточно большого числа реализаций процесса, и оказывается искомым решением соответствующей задачи.

М.-К. м., несмотря на его универсальность, имеет специфическую область приложения. В первую очередь к ней относятся различные многомерные задачи. Объем вычислений для обычных численных методов возрастает при увеличении размерности задачи приблизительно, как показательная ф-ция размерности, а для лишь как линейная ф-ция размерности. Эту закономерность легко проиллюстрировать на примере вычисления многократных интегралов. Если число операций ЦВМ, необходимое для вычисления -кратного интеграла при к в два раза меньше, чем для кубатурных формул, то при оно уже в двести раз меньше, а при раз. Кроме того, к области приложений относятся также задачи, требующие достаточно полного учета существенно влияющих случайных факторов.

В настоящее время реализуемыми на ЦВМ, решаются многие практические задачи. Помимо вычисления кратных интегралов, необходимо упомянуть решения систем алгебраических ур-ний высокого порядка, обращение матриц, отыскание характеристических чисел и собственных ф-ций интегральных ур-ний, вычисление континуальных интегралов и т. д.

Большое теоретическое и практическое значение получили исследования процессов проникновения частиц через вещество, передачи сообщений, массового обслуживания, кинетики химических реакций, а также процессов функционирования сложных систем, к которым относятся разнообразные производственные и информационные системы, автоматизированные системы управления, некоторые экономические и биологические системы и др.

При решении задач без ЦВМ источниками случайных чисел служили различные эксперименты (бросание монеты, извлечение карт из тщательно перетасованной колоды, верчение рулетки и т. д.). С именем города в княжестве Монако, известного своими игорными домами, и связано происхождение названия

Лит.: Бусленко Н. П., Шрейдер Ю. А. Метод статистических испытаний (Мовте-Карло) и его реализация на цифровых вычислительных машинах. М., 1961 [библиогр. с. 224—226]; Бусленко Н. П.

[и др.]. Метод статистических испытаний (Метод Монте-Карло). М., 1962 [библиогр. с. 213—327]; Бусленко Н. П. Моделирование сложных систем. М.. 1968 [библиогр. с. 353—355].

Н. П. Бусленко.

1
Оглавление
email@scask.ru