Главная > Введение в теорию упругости для инженеров и физиков
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Чистый изгиб цилиндрических стержней или балок

164. Теперь изучим изгиб — крайне важный для инженера-строителя вид деформации. Возьмем простейший случай, а именно, цилиндрический стержень (например, прокатная стальная балка), подверженный действию моментов на концах, вызывающих изгиб, и свободный от других видов усилий. Мы установим, что в этом случае не нужно накладывать ограничения (как в задаче о кручении) на форму поперечного сечения.

На первых этапах изучения мы можем предположить, что изгиб вызван любым способом. Так, мы можем сделать наиболее простое предположение, представив себе, что балка имеет большую длину и изгибается в замкнутое круглое кольцо так, что концевые сечения приводятся в соприкосновение. Если теперь поперечные сечения концевых сечений скрепить вместе, то все внешние силы можно удалить, и мы получим кольцо, поверхность которого совершенно свободна от напряжений. Таким образом, мы имеем пример тела с начальным напряжением (см. § 83, гл. III). Соображения симметрии показывают, что плоские сечения, перпендикулярные оси недеформированной балки, после деформации будут также плоскими, и их плоскости будут содержать ось кольца.

165. Пусть — длина балки, до того как она была изогнута в круглое кольцо, и пусть На рис. является осьюкольца, а —сечением кольца плоскостью, содержащей Начало координат помещено в какую-нибудь точку О, принадлежащую этой плоскости и находящуюся на расстоянии от оси Ось проведена параллельно, а ось перпендикулярно оси кольца Положительное направление по оси взято в сторону, противоположную Точка принадлежащая поперечному сечению кольца и определяемая координатами х и у, будет находиться на расстоянии от Точки, соответствующие в других поперечных сечениях, расположатся на окружности радиуса

Длина этой окружности В недеформированной балке эти точки лежали на отрезке, направленном по длине балки, и длина его была Следовательно, при изгибе эта длина изменяется на величину;

Ее относительное удлинение равно или т. е. мы имеем:

где через обозначено продольное удлинение балки.

Рис. 50.

166. Предположив, что это продольное удлинение вызывается простым продольным напряжением мы можем написать, что

где и представляют собой нормальные напряжения, имеющие направления Но надо подчеркнуть, что соотношения (13) основываются на дополнительном предположении и не являются необходимым выводом из (12). На самом деле, согласно (3) главы IV, мы имеем:

т. е. какие-нибудь два напряжения из трех можно было взять произвольно. Позже мы увидим, что сделанное выше предположение может быть оправдано соображениями минимуме упругой энергии».

167. Возьмем для выражение (13) и исследуем результирующее усилие, вызываемое этим комлонентом напряжения. Ясно, что по сечению, показанному на рис. 50, не может действовать результирующая растягивающая сила, так как такая же сила должна была бы действовать в каждом

другом сечении, внешней же силы для сохранения равновесия нет. Поэтому мы имеем условие

где через обозначен элемент площади поперечного сечения. Интегрирование распространяется на всю площадь поперечного сечения.

Подставляя из (13), мы получим, что

а это значит, что ось должна проходить через центр тяжести поперечного сечения Обозначим центр тяжести поперечного сечения через О и вместо наших прежних осей возьмем оси (см. рис. 51). Выражения (13) сохраняются, и мы получаем, что в результате изгиба линия, проходящая через центры тяжести поперечных сечений, не испытывает ни растяжения, ни сжатия. Продольное напряжение обращается в нуль во всех точках оси которая в силу этого называется нейтральной осью.

Рис. 51.

168. Вычислим изгибающий момент, т. е. суммарный момент относительно вызываемый напряжением Обозначим его через и получим:

После подстановки из (13) имеем:

где

т. е. геометрический момент инерции площади поперечного сечения относительно оси проходящей через центр тяжести поперечного сечения и перпендикулярной плоскости изгиба.

Уравнение (15) дает выражение для кривизны оси балки как функции приложенного изгибающего момента Исключая из (13) и (15), мы можем для получить формулу

которая показывает, что распределение продольного напряжения не зависит от упругих свойств материала балки.

169. Напряжение является чисто продольным, и, следовательно, его суммарное действие может состоять только из продольной силы растяжения (или сжатия) и из момента около некоторой оси, лежащей в плоскости поперечного сечения. В § 167 мы убедились в том, что результирующая сила равна нулю, а для момента относительно мы получили выражение (9). Для того чтобы этот момент мог быть результирующим усилием в поперечном сечении, момент около (рис. 51) должен равняться нулю. Для момента относительно в соответствии с (I) мы имеем:

После подстановки из (13) мы получим, что

Отсюда, для того чтобы могло быть нулем, мы должны иметь

Другими словами, оси должны быть главными осями инерции поперечного сечения.

Условие (18), очевидно, будет удовлетворено тогда, когда сечение симметрично относительно На самом деле, тогда каждой элементарной площадке содержащей точку

с координатами будет соответствовать равная площадка содержащая точку с координатами и поэтому эти две площадки при суммировании (или интегрировании) в формуле (18) уничтожатся. Аналогичное доказательство применяется и тогда, когда поперечное сечение симметрично относительно оси Сечения, не симметричные относительно или должны быть исследованы специально.

1
Оглавление
email@scask.ru