Главная > Справочное руководство по небесной механике и астродинамике
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 1.03. Остаточные члены интерполяционных формул

Остаточный член представляет собой разность между точным значением функции в точке и ее приближенным значением, которое вычисляется по интерполяционной формуле, оборванной на члене с разностью порядка, т. е. погрешность интерполяционной формулы порядка т.

Пусть функция дифференцируема раз или Обозначим через верхнюю границу модуля производной в интервале значений которые отвечают табличным значениям использованным при составлении

интерполяционной формулы порядка. Тогда оценки остаточного члена для различных интерполяционных формул следующие. Для формулы Лагранжа (в случае узлов):

Для формулы Эверетта!

Для остальных формул оценка имеет общий вид

где величина выражается различным образом для различных формул.

Для формул Ньютона интерполяции вперед и

Для формулы Ньютона экстраполяции вперед:

Для формулы Стирлинга:

Для формулы Бесселй:

Если нет никакой информации о возможной величине производной Так число остается неизвестным, то можно воспользоваться разностями порядка, которые вычисляются по имеющейся таблице разностей. Если наибольшие по абсолютной величине значения разностей

порядка в строчках таблицы, близких к данному не превышают то, заменив в на получим практические оценки для хотя строгое соблюдение знака гарантировать нельзя.

В оценке (7.1.13) следует заменить в этом случае на где последняя величина превышает по абсолютной величине разности порядка.

Значения величин равных для формул Ньютона, Стирлинга, Бесселя и для формулы Эверетта, дают представление о точности интерполяционных формул при различных

Кроме того, эти величины представляют собой оценки коэффициентов в соответствующих интерполяционных формулах при разностях порядка (в случае формулы Эверетта порядка) и таким образом позволяют сделать вывод о том, какими разностями можно пренебречь.

Приведем значения для различных интерполяционных формул.

В столбцах 1, 2, 3 и 4 даны значения и для формул Ньютона интерполяции, формулы Ньютона экстраполяции и формул Стирлинга, Бесселя соответственно. В столбце 5 даны значения для формулы Эверетта.

Приведенные числа показывают, что если ограничиться разностями нечетного порядка, то более выгодной с точки зрения

точности является формула Стирлинга, особенно при небольших Если же ограничиваться разностями четного порядка, то наиболее точной является формула Бесселя. Значения для формулы Бесселя при и при расположены симметрично относительно точки Следовательно, формулу Бесселя выгодней применять всегда при для интерполяции вперед.

Погрешность экстраполяции по формуле Ньютона превышает все остальные. Значения при экстраполяции при

равны соответственно

Они почти одинаковы при Значения для формул Ньютона в столбце 1 изменяются очень мало при переходе от

Исходя из значений можно сделать вывод, что, например, при применении формулы Бесселя можно отбросить четвертые разности, если они не превышают 20, и пятые разности, если они не превышают 500 (в единицах последнего знака в значениях функции При применении формулы Стирлинга и при 0,2 можно отбросить четвертые разности, если они не превосходят 300.

1
Оглавление
email@scask.ru