Главная > Дифракция и волноводное распространение оптического излучения
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

8.18. НЕЛИНЕЙНЫЕ ЭФФЕКТЫ В ОПТИЧЕСКИХ ВОЛОКНАХ

Замечательные характеристики волокон с очень низкими потерями привели к возможности создания широкополосных передающих систем дальнего действия. Необычайная протяженность этих систем позволяет исследовать нелинейные явления, возникающие при распространении излучения в световодах. Кроме большой длины взаимодействия для проявления нелинейности оказывается существенным наличие малого диаметра у сердцевины, что имеет место в одномодовых волоконных световодах, а также использование узкополосных одночастотных лазеров. В частности, произведение длины волокна на интенсивность где входная мощность, радиус сердцевины, может стать достаточно большим по сравнению с характерной интенсивностью при нелинейном распространении в пространственно-неограниченной среде. Таким образом, низкая нелинейная восприимчивость кварцевого стекла при относительно малой мощности компенсируется большой протяженностью волокна.

С одной стороны, нелинейные эффекты вредны и ограничивают передаваемую мощность в волоконных системах связи, а с другой, — их можно с выгодой использовать при создании специальных оптических приборов (например, волоконных лазеров на комбинационном

рассеянии [24]) или же для улучшения рабочего режима самого волокна (например, генерации солитонов).

Вспомним (см. гл. 2), что нелинейные оптические явления обычно описываются с помощью поляризуемости которую формально можно разложить в степенной ряд по напряженности электрического поля следующим образом (см. разд. 1.2.1):

Первый нелинейный член связанный, например, с генерацией второй гармоники, в стеклах равен нулю вследствие симметрии по отношению к инверсии, поэтому практически все нелинейные эффекты, имеющие место в стеклянных оптических волокнах, связаны с членом Эти эффекты можно грубо разбить на два класса, различающиеся тем, колеблется ли наведенная поляризация с частотой падающего поля или нет. Ко второму классу относятся вынужденное комбинационное рассеяние (ВКР), вынужденное рассеяние Мандельштама — Бриллюэна (ВРМБ) и четырехволновое смешение. К первому классу относятся так назвыаемые самоиндуцируемые эффекты, которые описываются, как будет показано в следующем разделе, с помощью нелинейного показателя преломления (оптический эффект Керра)

В данном разделе мы кратко рассмотрим ВКР и ВРМБ, поскольку именно эти явления накладывают ограничения на вводимую в волокно максимальную мощность. В следующем разделе мы изучим более подробно самоиндуцированные эффекты, которые можно описать с помощью некоторой общей теории:

Как ВКР, так и ВРМБ с классической точки зрения могут быть представлены как трехволновое взаимодействие между падающей волной (накачкой), сигнальной волной (стоксовой или мандельштам-бриллюэновской) и соответственно либо волной, связанной с колебательным возмущением молекул среды, либо звуковой волной [25]. В результате такого взаимодействия часть энергии, которая вначале содержится в волне накачки, постепенно преобразуется в сигнальную волну, распространяющуюся в случае ВКР в прямом и обратном направлениях, а в случае ВРМБ только в обратном направлении. В оптических линиях связи даже в отсутствие инжектируемого сигнального поля благодаря спонтанной эмиссии всегда существует слабый сигнал, который может быть значительно усилен за счет мощности волны накачки, несущей полезную информацию.

Оба процесса обычно характеризуются коэффициентами усиления слабого сигнала которые представляют собой

коэффициенты в экспоненте, характеризующей зависимость спектральной интенсивности сигнала на частоте от расстояния при условии, что поглощением интенсивности волны накачки пренебрегается. Соответствующие выражения для интенсивностей записываются в виде

Оба коэффициента усиления пропорциональны интенсивности накачки . Для ВКР мы имеем следующее выражение:

где разность между частотой волны накачки и стоксовой частотой (рис. 8.24) дается соотношением

где стоксово сечение на единицу объема в единичном частотном интервале, показатель преломления на частоте

Коэффициент усиления в случае ВРМБ существенно зависит от того, как соотносятся между собой ширина линии накачки и ширина линии спонтанного рассеяния Мандельштама — Бриллюэна (значение последней лежит в пределах для плавленого кварца в полосе пропускания оптического волокна). Например, если то при увеличении коэффициент усиления ВРМБ сигнала уменьшается в соответствии с отношением [26]. Всякий раз, когда выполняется это условие, ВКР (его порог, т. е. значение мощности накачки, при которой данный эффект становится заметным, лежит в области и выше) становится доминирующим

Рис. 8.24. Зависимость коэффициента усиления для ВКР от разностной частоты для плавленого кварца при длине волны накачки (Из работы Столена [24].).

нелинейным процессом. Если же в качестве источника накачки используется достаточно узкополосный лазер то доминирующим будет ВРМБ. В последнем случае максимальная входная мощность [26], передаваемая многокилометровым волокном, будет в сильной степени ограничена именно этим эффектом; в этом случае предельная входная мощность составит несколько милливатт. При превышении порога значительная часть интенсивности волны, распространяющейся вперед и представляющей собой волну накачки, преобразуется в распространяющуюся назад сигнальную волну.

1
Оглавление
email@scask.ru