Главная > Квантовая теория
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

26. Вычисление величин для изотропного гармонического осциллятора.

Рассмотрим теперь изотропный трехмерный гармонический осциллятор. Для удобства рассмотрим волну, распространяющуюся в направлении оси х и поляризованную в направлении оси Вычислим Согласно уравнению (18.47), это выражение точно равно

где нормированные собственные функции, принадлежащие различным собственным состояниям. В этом случае они являются собственными функциями для трехмерного гармонического осциллятора (см. выражение (15.40)).

Собственные функции более подробно можно записать так:

где собственная функция гармонического осциллятора в направлении оси х в состоянии д. Величина интеграла определяется легче всего при помощи уравнений (13.38) и (13.39). Сначала мы подставляем (см. уравнения (13.2) и (13.3)), тогда

Согласно уравнениям (13.38) и (13.39),

Следовательно,

В силу ортогональности функций для всех случаев, кроме и Поэтому при переходах под действием света, поляризованного только в направлении оси не происходит никакого изменения в состоянии колебаний в направлении Если и то интегралы по х и у равны единице вследствие предположения, что функции нормированы.

Что касается интегралов по то они все равны нулю, если только не выполнены условия

Другими словами, переходы могут иметь место только в тех состояниях, для которых -компонента колебаний переходит или в соседнее высшее, или в соседнее низшее состояние. В последних двух случаях интеграл по равен единице, поэтому

Первый из этих случаев соответствует поглощению фотона, так как энергия атома возрастает в результате перехода, а второй — испусканию, так как энергия атома убывает.

Средняя вероятность самопроизвольного испускания квантов в единичном телесном угле в направлении нормали к получается, если подставить полученные результаты в уравнение (18.51):

Заметим, что вероятность поглощения, так же как и вероятность испускания, возрастает с ростом возбуждения осциллятора. В основном состоянии конечно, испускание отсутствует, но уже существует определенная возможность поглощения.

1
Оглавление
email@scask.ru