Главная > Аналитическая динамика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 10.11. Диссипативная функция Релея.

Если среди заданных сил имеются силы, зависящйе от скорости, то они могут оказать влияние на члены в уравнениях Лагранжа (6.2.1). В некоторых случаях, когда силы являются гироскопическими (например, в задаче о движении заряженной частицы в магнитном поле, § 10.6), они могут быть учтены путем присоединения к выражению для соответствующих линейных членов. В этом параграфе мы рассмотрим другой класс задач, связанных с силами, зависящими от скорости. Речь будет идти о силах сопротивления, или диссипативных силах, действующих на каждую частицу в направлении, противоположном ее скорости. Мы ограничимся исследованием простого случая, когда сила сопротивления пропорциональна скорости. Уравнения движения (2.2.12) запишутся теперь в форме

причем коэффициенты подобно коэффициентам будут иметь одно и то же значение для трех членов, относящихся к одной частице: Коэффициенты к, подобно коэффициентам положительны, но, в

отличие от они могут зависеть как от , так и от Так как при произвольном виртуальном перемещении

то основное уравнение (3.1.1) принимает теперь вид

Предположим, что система голономна и имеет степеней свободы, и введем лагранжевы координаты Рассмотрим простой случай, когда переменные х зависят только от и не зависят от а силы (т. е. заданные силы, не являющиеся диссипативными) консервативны. Первое слагаемое в левой части равенства (10.11.2) известным образом (§ 6.1) выражается через лагранжевы координаты, остается рассмотреть второе слагаемое

Согласно лемме 1 § 6.1 имеем

Отсюда

Введем диссипативную функцию Релея представляющую собой сумму выраженную через Эта функция в известном смысле аналогична функции кинетической энергии Т: она представляет собой однородную квадратичную форму переменных с коэффициентами, зависящими от и является определенно-положительной при всех значениях Уравнение (10.11.4) можно теперь представить в следующей форме:

Основное уравнение (10.11.2) после преобразования первого слагаемого (§ 6.1) принимает вид

Оно справедливо для произвольных значений таким образом, мы получаем уравнений движения

Физический смысл функции очевиден: численное значение в любой момент времени равно половине скорости потери энергии, расходуемой на преодоление трения. Это истолкование подтверждается и соотношением (10.11.7): умножая уравнение на и суммируя по от 1 до находим (см. § 6.7)

В качестве примера рассмотрим колебания системы около положения устойчивого равновесия при наличии диссипативных сил рассматриваемого типа. Диссипация, очевидно, способствует устойчивости. Как обычно, примем, что в точке О функция V равна нулю, так что (поскольку V имеет в точке О минимум) в окрестности точки О, но не в самой этой точке. Если при энергия имеет значение С, то согласно (10.11.8) при следовательно, при и равновесие устойчиво.

Приведенные рассуждения, однако, не являются полными. В общем случае при смещение стремится к нулю и колебание затухает. Когда смещение стремится к нулю, говорят об асимптотической устойчивости; когда же оно сохраняется малым (см. § 9.9), то говорят просто об устойчивости.

Докажем, что наличие диссипативных сил превращает обычную устойчивость в асимптотическую. Рассмотрим для простоты систему с двумя степенями свободы. Пусть х и у — главные координаты системы без затухания, так что

Введем теперь диссипативные силы, соответствующие диссипативной функции

где с достаточной степенью точности можно считать равными их значениям в положении равновесия. Уравнения движения запишутся в виде

Заметим, что если форма лишь знакопостоянная, то движение может и не быть асимптотически устойчивым, например, если то движение по координате х будет представлять гармоническое колебание. Если, однако, определенно-положительная форма, то обе переменные х и у стремятся к нулю при . В самом деле, решения уравнений (10.11.11) строятся как линейные комбинации членов где суть корни уравнения четвертой степени

причем все они имеют отрицательные вещественные части. В самом деле, пусть обозначает левую часть уравнения (10.11.12). Функция не имеет действительных или чисто мнимых нулей, и изменение при обходе контура, состоящего из отрезка действительной положительной полуоси, дуги большого круга в первом квадранте и отрезка положительной мнимой полуоси, равно нулю. Поэтому уравнение (10.11.12) не имеет корней в первом квадранте. Поскольку коэффициенты в уравнении действительны, его корни комплексно-сопряженные, и, следовательно, справа от мнимой оси уравнение не имеет корней. Таким образом, все четыре корня лежат слева от мнимой оси и действительные части их отрицательны.

1
Оглавление
email@scask.ru