Главная > Аналитическая динамика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 19.8. Движение в окрестности седловой точки.

Запишем уравнения в форме

где Имеем

Можно указать такой угол и такую положительную постоянную К, чтобы

(обозначения см. на рис. 82). Кроме того, имеем

так что

Аналогичные результаты можно получить и для если рассматривать точки в достаточной близости от точки О. Существуют расстояние и положительные числа к, к такие, что если то

и

Рассмотрим траекторию, начинающуюся в области Поскольку в этой области изображающая точка перейдет в область (если только перед этим она не выйдет за пределы круга Как и ранее, оказавшись в области , изображающая точка останется в этой области. Но в области

что указывает на то, что при дальнейшем движений изображающая точка покинет круг. Итак, либо точка попадает в область и затем выходит за пределы круга либо она покидает этот круг прежде, чем входит в область А. Особая точка неустойчива, что совпадает с результатом, полученным при линейном приближении.

Рис. 82.

Как и в случае линейного приближения, существует одна единственная траектория, которая входит в точку О по направлению положительной оси х. Для доказательства рассмотрим траектории, начинающиеся в точках дуги окружности Траектория с началом в точке попадает в область после чего она покидает пределы круга в точке, расположенной выше оси (как мы видели выше). Аналогично, траектория, начинающаяся в точке С, попадает в область 54 и потом выходит из пределов круга в точке ниже оси Если теперь предположить, что все траектории, начинающиеся в точках дуги принадлежат к одной из двух этих групп (т. е. они покидают пределы круга либо в верхней, либо в нижней полуплоскости), то придем к противоречию. На дуге имеем два открытых множества, следовательно, существует хотя бы одна разделяющая их точка, которая не принадлежит ни к одному из этих множеств; начинающаяся в этой точке траектория не относится ни к одной из указанных групп. Эта траектория не покидает пределов области следовательно, входит в точку О вдоль оси Но с помощью тех же рассуждений можно доказать, что существует по крайней мере одна траектория, входящая в точку О слева по оси

Пример Простой маятник. В качестве примера рассмотрим простой маятник вблизи положения неустойчивого равновесия. Если отсчитывать значения от верхней точки окружности, то уравнение движения запишется в форме

Оно эквивалентно двум уравнениям первого порядка:

Напишем линейное приближение:

Собственные значения равны особая точка представляет собой седло. Из предыдущего нам известно, что существует траектория, которая входит в особую точку с двух противоположных сторон; в соответствующих лимитационных движениях маятник достигает верхней точки окружности.

На рис. 83 показаны траектории для общего случая (не только для случая движения вблизи особой точки). Особенности расположены на линии в точках точки четное) являются седлами, точками неустойчивого равновесия, а нечетное) представляют собой вихревые точки, точки устойчивого равновесия. Уравнения траекторий имеют вид

где угловая скорость в нижней точке окружности; уравнение (19.8.12), разумеется, эквивалентно уравнению энергии. Для колебательных движений для движений, в которых непрерывно возрастает или убывает, В критическом случае, когда энергетический уровень касается окружности в ее верхней точке, Разделяющая кривая, или сепаратриса, определяется уравнением (кривая изображенная на рисунке пунктиром, соответствует движению, когда при 2а снизу; физически это движение не отличается от лимитационного движения, в котором при снизу, так что фактически пунктирная кривая также является частью сепаратрисы).

Рис. 83.

Пример 19.8В. Маятник в сопротивляющейся среде. Рассмотрим теперь случай, когда маятник движется в сопротивляющейся среде. Пусть, например, бусинка скользит по гладкой вертикальной проволочной окружности, испытывая сопротивление, пропорциональное скорости. Отсчитывая от верхней точки окружности, запишем уравнение движения в форме

Оно эквивалентно двум уравнениям первого порядка:

Первое приближение будет иметь вид

Собственные значения равны где Точка является седловой точкой. Существует траектория, которая входит в это седло с двух сторон.

В любой точке окружности можно сообщить бусинке такую начальную скорость, которая будет как раз достаточна для того, чтобы бусинка достигла верхней точки, хотя время для этого может потребоваться бесконечно большое. Это чувствуется интуитивно. Можно представить, что существует критическое значение начальной скорости, ниже которого бусинка не дойдет до верхней точки окружности, а выше которой — пройдет ее.

Интересно рассмотреть совокупность траекторий в общем случае (а не только вблизи седловой точки). Заменив на х и выбрав соответствующий масштаб времени, можно уравнение записать в следующей форме:

где соответствующие уравнения первого порядка будут иметь вид

В подобных задачах обычно удается построить силовые линии графически. Построим сначала (рис. 84) кривую Перпендикуляр к оси опущенный

из произвольной точки А, пересечет синусоиду в точке В, а ось в точке На оси выберем точку С, лежащую слева (справа) от точки на расстоянии если точка А расположена выше (ниже) точки В. Вектор поля в точке А имеет направление, перпендикулярное к СА. На рис. 85 показаны силовые линии этого лоля, которые являются траекториями рассматриваемой динамической задачи.

Рис. 84.

Рис. 85.

Точка неустойчивого равновесия является седлом, а точка устойчивого равновесия устойчивым фокусом.

1
Оглавление
email@scask.ru