Главная > Оптическая когерентность и квантовая оптика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

22.4.7. Временной интервал между сигнальным и холостым фотонами

Мы уже видели, что в процессе параметрической вниз-конверсии сигнальный и холостой фотоны появляются вместе. Интересен вопрос о масштабе времени внутри которого сигнальный и холостой фотоны можно считать «одновременными». В работе (Burnham and Weinberg, 1970) было экспериментально обнаружено, что эти два фотона разделены не более чем несколькими наносекундами. Однако авторы признали, что это полученное время корреляции вероятно, определялось временем разрешения их фотодетектора, а не является присущим процессу вниз-конверсии. Хотя более поздние измерения с более быстрыми детекторами и привели к более низким значениям (Friberg, Hong and Mandel, 1985b), было обнаружено, что собственное время корреляции, обратно пропорциональное ширине полосы вниз-конвертированного света, находится в пикосекундной или субпикосекундной области. Это время настолько меньше времени разрешения детектора или сопутствующей электроники, что могло оказаться ненаблюдаемым. Однако, используя интерференционную технику, а не прямое детектирование, в работе (Hong, Ou and Mandel, 1987) удалось измерить фотонов, полученных в результате распада.

Для того, чтобы понять принцип этого эксперимента, предположим, что светоделитель (рис. 22.4) имеет два входа 1 и 2 и два выхода 3 и 4. Предположим, что сигнальный фотон входит в отверстие 1, пройдя расстояние от параметрического преобразователя, и что сопряженный холостой фотон входит в отверстие 2, пройдя расстояние Вычислим совместную вероятность детектирования пары фотонов при совпадении в выходных отверстиях 3 и 4. Поле в выходных отверстиях может быть выражено в виде

где есть комплексные амплитудные коэффициенты отражения и прохождения светоделителя. Плотность совместной вероятности того, что фотон детектируется в отверстии 3 в момент и другой фотон в отверстии 4 в момент пропорциональна

где определяется выражением (22.4.21). Здесь есть квантовые эффективности детекторов в отверстиях 3 и 4, соответственно.

Теперь подставим выражения для и вычислим среднее при больших так же как это делалось при выводе (22.4.31). После некоторого длинного, но простого расчета получаем в результате, что

Здесь

есть фурье-образ спектральной функции которая является автокорреляционной функцией вниз-конвертированного света, и

есть нормированная автокорреляция. Область значений в которой эта функция существенно отлична от нуля имеет порядок так что она очень мала, когда

Рис. 22.4. Иллюстрирующий принцип определения временного интервала между двумя фотонами с помощью интерференции в светоделителе

На практике обычно измеряют скорость совпадений отсчетов которая является скоростью, с которой отсчеты регистрируются в отверстиях 3 и 4 в течение времени разрешения детектора и электроники. Таким образом,

Подставляя в интеграл, интегрируя и учитывая, что обычно, намного больше времени когерентности так что пределы в (22.4.37) можно заменить на приходим к формуле (Hong, Ou and Mandel, 1987)

Обсудим вид как функции от в частном случае, когда спектральная функция гауссовская, так что

Тогда легко находим из (22.4.38), что

Эта скорость равна нулю, когда и возрастает с увеличением до значения когда Другими словами, изменяя время задержки между сигнальным и холостым фотонами, и измеряя скорость двухфотонных совпадений на выходе светоделителя в зависимости от можно определить время корреляции между двумя фотонами. Более того, так как измерение является интерференционным, возможно измерение корреляционных времен в субпикосекундной временной области, которые намного короче, чем времена разрешения детекторов и считывающей электроники.

На рис. 22.5 показана схема эксперимента для измерения распределения интервалов времени между сигнальным и холостым фотонами, созданными в процессе параметрического распада. Два фотона падают на светоделитель с противоположных сторон; в результате получаются два выходных луча с вкладами от сигнального и холостого фотонов. Смешанные сигнальные и холостые фотоны регистрируются детекторами как раздельно, так и в схеме совпадений. Интерференционные фильтры помещенные перед детекторами, имеют полосу пропускания около Гц, что означает, что фотоны, падающие на детекторы, должны рассматриваться, как волновые пакеты с длительностью

Рис. 22.5. Схема эксперимента по измерению временного интервала между двумя фотонами с помощью интерференции в светоделителе нелинейный кристалл дигидрофосфата калия, действующий как вниз-конвертор, и — компьютер. (Из работы Hong, Ou and Mandel, 1987)

Рис. 22.6. Результаты измерений двухфотонных совпадений в зависимости от дифференциального времени задержки между двумя фотонами, наложенные на теоретическую (сплошную) кривую. (Воспроизведено из Hong, Ou and Mandel, 1987)

Для того чтобы ввести дифференциальное время задержки между сигнальным и холостым фотонами, светоделитель слегка перемещается. Это укорачивает путь для одного фотона относительно другого.

На Рис 22.6 показаны результаты измерений, наложенные на теоретическую кривую, полученную из (22.4.38) или (22.4.40). Из распределения совпадающих отсчетов следует, что два фотона имеют корреляционное время что и следовало ожидать, учитывая полосы пропускания Заметим, что время разрешения, достигнутое в этом эксперименте, почти в миллион раз короче, чем времена разрешения детекторов и электроники.

И, наконец, заманчиво узнать, существует ли интуитивно простой путь для понимания этого эксперимента. Было уже показано (см. разд. 12.12), что когда один фотон входит в 50% -светоделитель в отверстие 1 и подобный фотон входит в отверстие 2, деструктивная интерференция делает невозможным выход одного фотона в отверстие 3 и другого в отверстие 4 (ср. рис. 22.4). Вместо этого оба фотона появляются вместе или в отверстии 3 или отверстии 4. Скорость совпадений, следовательно, равна нулю для тождественных, одновременных фотонов. Однако если один фотон задерживается относительно другого, так что два волновых пакета больше не перекрываются полностью, деструктивная интерференция действует не в полной мере. Скорость совпадений тогда растет с задержкой до тех пор, пока она, для больших задержек, не станет постоянной и независимой от времени задержки. Это соответствует зависимости, показанной на рис. 22.6.

1
Оглавление
email@scask.ru