§ 23. Уравнение прямой, проходящей через две точки
Прямая, проходящая через две точки
представляется уравнением
Оно выражает, что данные точки
и «текущая» точка
лежат на одной прямой (§ 22).
Уравнение (1) можно представить (см. ниже замечание) в виде
Это уравнение выражает пропорциональность катетов в прямоугольных треугольниках
и
изображенных на рис. 22, где
Пример 1. Составить уравнение прямой, проходящей через точки (1; 5) и (3; 9). Решение. Формула (1) дает:
т. е.
или
Формула (2) дает
Отсюда снова находим
Замечание. В случае, когда
один из знаменателей равенства (2) равен нулю; тогда
Рис. 22
уравнение (2) надо понимать в том смысле, что соответствующий числитель равен нулю (см. ниже пример 2, а также сноску на с. 37).
Пример 2. Составить уравнение прямой, проходящей через точки
Уравнение (1) дает:
Уравнение (2) запишется в виде
здесь знаменатель левой части равен нулю. Понимая уравнение (4) в вышеуказанном смысле, полагаем числитель левой части равным нулю. Получаем прежний результат